亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

How can we leverage existing column relationships within silos, to predict similar ones across silos? Can we do this efficiently and effectively? Existing matching approaches do not exploit prior knowledge, relying on prohibitively expensive similarity computations. In this paper we present the first technique for matching columns across data silos, called SiMa, which leverages Graph Neural Networks (GNNs) to learn from existing column relationships within data silos, and dataset-specific profiles. The main novelty of SiMa is its ability to be trained incrementally on column relationships within each silo individually, without requiring the consolidation of all datasets in a single place. Our experiments show that SiMa is more effective than the - otherwise inapplicable to the setting of silos - state-of-the-art matching methods, while requiring orders of magnitude less computational resources. Moreover, we demonstrate that SiMa considerably outperforms other state-of-the-art column representation learning methods.

相關內容

Data assimilation (DA), as an indispensable component within contemporary Numerical Weather Prediction (NWP) systems, plays a crucial role in generating the analysis that significantly impacts forecast performance. Nevertheless, the development of an efficient DA system poses significant challenges, particularly in establishing intricate relationships between the background data and the vast amount of multi-source observation data within limited time windows in operational settings. To address these challenges, researchers design complex pre-processing methods for each observation type, leveraging approximate modeling and the power of super-computing clusters to expedite solutions. The emergence of deep learning (DL) models has been a game-changer, offering unified multi-modal modeling, enhanced nonlinear representation capabilities, and superior parallelization. These advantages have spurred efforts to integrate DL models into various domains of weather modeling. Remarkably, DL models have shown promise in matching, even surpassing, the forecast accuracy of leading operational NWP models worldwide. This success motivates the exploration of DL-based DA frameworks tailored for weather forecasting models. In this study, we introduces FuxiDA, a generalized DL-based DA framework for assimilating satellite observations. By assimilating data from Advanced Geosynchronous Radiation Imager (AGRI) aboard Fengyun-4B, FuXi-DA consistently mitigates analysis errors and significantly improves forecast performance. Furthermore, through a series of single-observation experiments, Fuxi-DA has been validated against established atmospheric physics, demonstrating its consistency and reliability.

The origins of fiducial inference trace back to the 1930s when R. A. Fisher first introduced the concept as a response to what he perceived as a limitation of Bayesian inference - the requirement for a subjective prior distribution on model parameters in cases where no prior information was available. However, Fisher's initial fiducial approach fell out of favor as complications arose, particularly in multi-parameter problems. In the wake of 2000, amidst a renewed interest in contemporary adaptations of fiducial inference, generalized fiducial inference (GFI) emerged to extend Fisher's fiducial argument, providing a promising avenue for addressing numerous crucial and practical inference challenges. Nevertheless, the adoption of GFI has been limited due to its often demanding mathematical derivations and the necessity for implementing complex Markov Chain Monte Carlo algorithms. This complexity has impeded its widespread utilization and practical applicability. This paper presents a significant advancement by introducing an innovative variant of GFI designed to alleviate these challenges. Specifically, this paper proposes AutoGFI, an easily implementable algorithm that streamlines the application of GFI to a broad spectrum of inference problems involving additive noise. AutoGFI can be readily implemented as long as a fitting routine is available, making it accessible to a broader audience of researchers and practitioners. To demonstrate its effectiveness, AutoGFI is applied to three contemporary and challenging problems: tensor regression, matrix completion, and regression with network cohesion. These case studies highlight the immense potential of GFI and illustrate AutoGFI's promising performance when compared to specialized solutions for these problems. Overall, this research paves the way for a more accessible and powerful application of GFI in a range of practical domains.

We introduce GEM3D -- a new deep, topology-aware generative model of 3D shapes. The key ingredient of our method is a neural skeleton-based representation encoding information on both shape topology and geometry. Through a denoising diffusion probabilistic model, our method first generates skeleton-based representations following the Medial Axis Transform (MAT), then generates surfaces through a skeleton-driven neural implicit formulation. The neural implicit takes into account the topological and geometric information stored in the generated skeleton representations to yield surfaces that are more topologically and geometrically accurate compared to previous neural field formulations. We discuss applications of our method in shape synthesis and point cloud reconstruction tasks, and evaluate our method both qualitatively and quantitatively. We demonstrate significantly more faithful surface reconstruction and diverse shape generation results compared to the state-of-the-art, also involving challenging scenarios of reconstructing and synthesizing structurally complex, high-genus shape surfaces from Thingi10K and ShapeNet.

What counts as legitimate AI ethics labor, and consequently, what are the epistemic terms on which AI ethics claims are rendered legitimate? Based on 75 interviews with technologists including researchers, developers, open source contributors, and activists, this paper explores the various epistemic bases from which AI ethics is discussed and practiced. In the context of outside attacks on AI ethics as an impediment to "progress," I show how some AI ethics practices have reached toward authority from automation and quantification, and achieved some legitimacy as a result, while those based on richly embodied and situated lived experience have not. This paper draws together the work of feminist Anthropology and Science and Technology Studies scholars Diana Forsythe and Lucy Suchman with the works of postcolonial feminist theorist Sara Ahmed and Black feminist theorist Kristie Dotson to examine the implications of dominant AI ethics practices. By entrenching the epistemic power of quantification, dominant AI ethics practices-Model Cards and similar interventions-risk legitimizing AI ethics as a project in equal and opposite measure to which they delegitimize and marginalize embodied and lived experiences as legitimate parts of the same project. In response, I propose humble technical practices: quantified or technical practices which specifically seek to make their epistemic limits clear in order to flatten hierarchies of epistemic power.

Metaphors, although occasionally unperceived, are ubiquitous in our everyday language. Thus, it is crucial for Language Models to be able to grasp the underlying meaning of this kind of figurative language. In this work, we present Meta4XNLI, a novel parallel dataset for the tasks of metaphor detection and interpretation that contains metaphor annotations in both Spanish and English. We investigate language models' metaphor identification and understanding abilities through a series of monolingual and cross-lingual experiments by leveraging our proposed corpus. In order to comprehend how these non-literal expressions affect models' performance, we look over the results and perform an error analysis. Additionally, parallel data offers many potential opportunities to investigate metaphor transferability between these languages and the impact of translation on the development of multilingual annotated resources.

Evolutionary multitasking (EMT) has emerged as a popular topic of evolutionary computation over the past years. It aims to concurrently address multiple optimization tasks within limited computing resources, leveraging inter-task knowledge transfer techniques. Despite the abundance of multitask evolutionary algorithms (MTEAs) proposed for multitask optimization (MTO), there remains a comprehensive software platform to help researchers evaluate MTEA performance on benchmark MTO problems as well as explore real-world applications. To bridge this gap, we introduce the first open-source optimization platform, named MTO-Platform (MToP), for EMT. MToP incorporates over 40 MTEAs, more than 150 MTO problem cases with real-world applications, and over 10 performance metrics. Moreover, to facilitate comparative analyses between MTEAs and traditional evolutionary algorithms, we adapted over 40 popular single-task evolutionary algorithms to address MTO problems. MToP boasts a user-friendly graphical interface, facilitating results analysis, data export, and schematics visualization. More importantly, MToP is designed with extensibility in mind, allowing users to develop new algorithms and tackle emerging problem domains. The source code of MToP is available at //github.com/intLyc/MTO-Platform.

3D Gaussian Splatting (GS) have achieved considerable improvement over Neural Radiance Fields in terms of 3D fitting fidelity and rendering speed. However, this unstructured representation with scattered Gaussians poses a significant challenge for generative modeling. To address the problem, we introduce GaussianCube, a structured GS representation that is both powerful and efficient for generative modeling. We achieve this by first proposing a modified densification-constrained GS fitting algorithm which can yield high-quality fitting results using a fixed number of free Gaussians, and then re-arranging the Gaussians into a predefined voxel grid via Optimal Transport. The structured grid representation allows us to use standard 3D U-Net as our backbone in diffusion generative modeling without elaborate designs. Extensive experiments conducted on ShapeNet and OmniObject3D show that our model achieves state-of-the-art generation results both qualitatively and quantitatively, underscoring the potential of GaussianCube as a powerful and versatile 3D representation.

We present a novel end-to-end algorithm (PoCo) for the indoor RGB-D place recognition task, aimed at identifying the most likely match for a given query frame within a reference database. The task presents inherent challenges attributed to the constrained field of view and limited range of perception sensors. We propose a new network architecture, which generalizes the recent Context of Clusters (CoCs) to extract global descriptors directly from the noisy point clouds through end-to-end learning. Moreover, we develop the architecture by integrating both color and geometric modalities into the point features to enhance the global descriptor representation. We conducted evaluations on public datasets ScanNet-PR and ARKit with 807 and 5047 scenarios, respectively. PoCo achieves SOTA performance: on ScanNet-PR, we achieve R@1 of 64.63%, a 5.7% improvement from the best-published result CGis (61.12%); on Arkit, we achieve R@1 of 45.12%, a 13.3% improvement from the best-published result CGis (39.82%). In addition, PoCo shows higher efficiency than CGis in inference time (1.75X-faster), and we demonstrate the effectiveness of PoCo in recognizing places within a real-world laboratory environment.

3D scene representations have gained immense popularity in recent years. Methods that use Neural Radiance fields are versatile for traditional tasks such as novel view synthesis. In recent times, some work has emerged that aims to extend the functionality of NeRF beyond view synthesis, for semantically aware tasks such as editing and segmentation using 3D feature field distillation from 2D foundation models. However, these methods have two major limitations: (a) they are limited by the rendering speed of NeRF pipelines, and (b) implicitly represented feature fields suffer from continuity artifacts reducing feature quality. Recently, 3D Gaussian Splatting has shown state-of-the-art performance on real-time radiance field rendering. In this work, we go one step further: in addition to radiance field rendering, we enable 3D Gaussian splatting on arbitrary-dimension semantic features via 2D foundation model distillation. This translation is not straightforward: naively incorporating feature fields in the 3DGS framework encounters significant challenges, notably the disparities in spatial resolution and channel consistency between RGB images and feature maps. We propose architectural and training changes to efficiently avert this problem. Our proposed method is general, and our experiments showcase novel view semantic segmentation, language-guided editing and segment anything through learning feature fields from state-of-the-art 2D foundation models such as SAM and CLIP-LSeg. Across experiments, our distillation method is able to provide comparable or better results, while being significantly faster to both train and render. Additionally, to the best of our knowledge, we are the first method to enable point and bounding-box prompting for radiance field manipulation, by leveraging the SAM model. Project website at: //feature-3dgs.github.io/

Gaussian splatting has emerged as a powerful 3D representation that harnesses the advantages of both explicit (mesh) and implicit (NeRF) 3D representations. In this paper, we seek to leverage Gaussian splatting to generate realistic animatable avatars from textual descriptions, addressing the limitations (e.g., flexibility and efficiency) imposed by mesh or NeRF-based representations. However, a naive application of Gaussian splatting cannot generate high-quality animatable avatars and suffers from learning instability; it also cannot capture fine avatar geometries and often leads to degenerate body parts. To tackle these problems, we first propose a primitive-based 3D Gaussian representation where Gaussians are defined inside pose-driven primitives to facilitate animation. Second, to stabilize and amortize the learning of millions of Gaussians, we propose to use neural implicit fields to predict the Gaussian attributes (e.g., colors). Finally, to capture fine avatar geometries and extract detailed meshes, we propose a novel SDF-based implicit mesh learning approach for 3D Gaussians that regularizes the underlying geometries and extracts highly detailed textured meshes. Our proposed method, GAvatar, enables the large-scale generation of diverse animatable avatars using only text prompts. GAvatar significantly surpasses existing methods in terms of both appearance and geometry quality, and achieves extremely fast rendering (100 fps) at 1K resolution.

北京阿比特科技有限公司