亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The theme for CUI 2023 is 'designing for inclusive conversation', but who are CUIs really designed for? The field has its roots in computer science, which has a long acknowledged diversity problem. Inspired by studies mapping out the diversity of the CHI and voice assistant literature, we set out to investigate how these issues have (or have not) shaped the CUI literature. To do this we reviewed the 46 full-length research papers that have been published at CUI since its inception in 2019. After detailing the eight papers that engage with accessibility, social interaction, and performance of gender, we show that 90% of papers published at CUI with user studies recruit participants from Europe and North America (or do not specify). To complement existing work in the community towards diversity we discuss the factors that have contributed to the current status quo, and offer some initial suggestions as to how we as a CUI community can continue to improve. We hope that this will form the beginning of a wider discussion at the conference.

相關內容

Since the inception of human research studies, researchers must often interact with participants on a set schedule to collect data. Researchers manually perform many interactions, leading to considerable time and financial expenses. Usually, user-provided data collection consists of surveys administered via telephone or email. These methods are tedious for the survey administrators, which could cause fatigue and potentially lead to collection mistakes. This project leverages recent advancements in automatic speech recognition, speech-to-text, natural language understanding (NLU), and finite-state machines to automate research protocols. This generalized application is fully customizable and irrespective of any research study. New research protocols can be quickly created based on these parameters once envisioned. Thus, we present SmartState, a fully-customizable, state-driven protocol manager combined with supporting AI components to autonomously manage user data and intelligently determine users' intentions through chat and end-device interactions.

Digital media have enabled the access to unprecedented literary knowledge. Authors, readers, and scholars are now able to discover and share an increasing amount of information about books and their authors. However, these sources of knowledge are fragmented and do not adequately represent non-Western writers and their works. In this paper we present The World Literature Knowledge Graph, a semantic resource containing 194,346 writers and 965,210 works, specifically designed for exploring facts about literary works and authors from different parts of the world. The knowledge graph integrates information about the reception of literary works gathered from 3 different communities of readers, aligned according to a single semantic model. The resource is accessible through an online visualization platform, which can be found at the following URL: //literaturegraph.di.unito.it/. This platform has been rigorously tested and validated by $3$ distinct categories of experts who have found it to be highly beneficial for their respective work domains. These categories include teachers, researchers in the humanities, and professionals in the publishing industry. The feedback received from these experts confirms that they can effectively utilize the platform to enhance their work processes and achieve valuable outcomes.

As robots take on roles in our society, it is important that their appearance, behaviour and personality are appropriate for the job they are given and are perceived favourably by the people with whom they interact. Here, we provide an extensive quantitative and qualitative study exploring robot personality but, importantly, with respect to individual human traits. Firstly, we show that we can accurately portray personality in a social robot, in terms of extroversion-introversion using vocal cues and linguistic features. Secondly, through garnering preferences and trust ratings for these different robot personalities, we establish that, for a Robo-Barista, an extrovert robot is preferred and trusted more than an introvert robot, regardless of the subject's own personality. Thirdly, we find that individual attitudes and predispositions towards robots do impact trust in the Robo-Baristas, and are therefore important considerations in addition to robot personality, roles and interaction context when designing any human-robot interaction study.

Traditional machine learning paradigms are based on the assumption that both training and test data follow the same statistical pattern, which is mathematically referred to as Independent and Identically Distributed ($i.i.d.$). However, in real-world applications, this $i.i.d.$ assumption often fails to hold due to unforeseen distributional shifts, leading to considerable degradation in model performance upon deployment. This observed discrepancy indicates the significance of investigating the Out-of-Distribution (OOD) generalization problem. OOD generalization is an emerging topic of machine learning research that focuses on complex scenarios wherein the distributions of the test data differ from those of the training data. This paper represents the first comprehensive, systematic review of OOD generalization, encompassing a spectrum of aspects from problem definition, methodological development, and evaluation procedures, to the implications and future directions of the field. Our discussion begins with a precise, formal characterization of the OOD generalization problem. Following that, we categorize existing methodologies into three segments: unsupervised representation learning, supervised model learning, and optimization, according to their positions within the overarching learning process. We provide an in-depth discussion on representative methodologies for each category, further elucidating the theoretical links between them. Subsequently, we outline the prevailing benchmark datasets employed in OOD generalization studies. To conclude, we overview the existing body of work in this domain and suggest potential avenues for future research on OOD generalization. A summary of the OOD generalization methodologies surveyed in this paper can be accessed at //out-of-distribution-generalization.com.

In today's world, where societal challenges in the areas of digitalization, demographic change and sustainability are becoming increasingly complex, new innovation structures are needed to meet these challenges. Living Labs or also Real World Laboratories prove to be such. Through their applied methods such as co-creation, they integrate users into research, making it more user-centric. Which other research infrastructures exist and how they can be differentiated is presented in this paper on the basis of a systematic literature research. Furthermore, methods for user integration are examined and provided in the form of an overview.

Knowledge plays a critical role in artificial intelligence. Recently, the extensive success of pre-trained language models (PLMs) has raised significant attention about how knowledge can be acquired, maintained, updated and used by language models. Despite the enormous amount of related studies, there still lacks a unified view of how knowledge circulates within language models throughout the learning, tuning, and application processes, which may prevent us from further understanding the connections between current progress or realizing existing limitations. In this survey, we revisit PLMs as knowledge-based systems by dividing the life circle of knowledge in PLMs into five critical periods, and investigating how knowledge circulates when it is built, maintained and used. To this end, we systematically review existing studies of each period of the knowledge life cycle, summarize the main challenges and current limitations, and discuss future directions.

Trust has emerged as a key factor in people's interactions with AI-infused systems. Yet, little is known about what models of trust have been used and for what systems: robots, virtual characters, smart vehicles, decision aids, or others. Moreover, there is yet no known standard approach to measuring trust in AI. This scoping review maps out the state of affairs on trust in human-AI interaction (HAII) from the perspectives of models, measures, and methods. Findings suggest that trust is an important and multi-faceted topic of study within HAII contexts. However, most work is under-theorized and under-reported, generally not using established trust models and missing details about methods, especially Wizard of Oz. We offer several targets for systematic review work as well as a research agenda for combining the strengths and addressing the weaknesses of the current literature.

Since the cyberspace consolidated as fifth warfare dimension, the different actors of the defense sector began an arms race toward achieving cyber superiority, on which research, academic and industrial stakeholders contribute from a dual vision, mostly linked to a large and heterogeneous heritage of developments and adoption of civilian cybersecurity capabilities. In this context, augmenting the conscious of the context and warfare environment, risks and impacts of cyber threats on kinetic actuations became a critical rule-changer that military decision-makers are considering. A major challenge on acquiring mission-centric Cyber Situational Awareness (CSA) is the dynamic inference and assessment of the vertical propagations from situations that occurred at the mission supportive Information and Communications Technologies (ICT), up to their relevance at military tactical, operational and strategical views. In order to contribute on acquiring CSA, this paper addresses a major gap in the cyber defence state-of-the-art: the dynamic identification of Key Cyber Terrains (KCT) on a mission-centric context. Accordingly, the proposed KCT identification approach explores the dependency degrees among tasks and assets defined by commanders as part of the assessment criteria. These are correlated with the discoveries on the operational network and the asset vulnerabilities identified thorough the supported mission development. The proposal is presented as a reference model that reveals key aspects for mission-centric KCT analysis and supports its enforcement and further enforcement by including an illustrative application case.

Deep Learning (DL) is the most widely used tool in the contemporary field of computer vision. Its ability to accurately solve complex problems is employed in vision research to learn deep neural models for a variety of tasks, including security critical applications. However, it is now known that DL is vulnerable to adversarial attacks that can manipulate its predictions by introducing visually imperceptible perturbations in images and videos. Since the discovery of this phenomenon in 2013~[1], it has attracted significant attention of researchers from multiple sub-fields of machine intelligence. In [2], we reviewed the contributions made by the computer vision community in adversarial attacks on deep learning (and their defenses) until the advent of year 2018. Many of those contributions have inspired new directions in this area, which has matured significantly since witnessing the first generation methods. Hence, as a legacy sequel of [2], this literature review focuses on the advances in this area since 2018. To ensure authenticity, we mainly consider peer-reviewed contributions published in the prestigious sources of computer vision and machine learning research. Besides a comprehensive literature review, the article also provides concise definitions of technical terminologies for non-experts in this domain. Finally, this article discusses challenges and future outlook of this direction based on the literature reviewed herein and [2].

Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.

北京阿比特科技有限公司