亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Since the cyberspace consolidated as fifth warfare dimension, the different actors of the defense sector began an arms race toward achieving cyber superiority, on which research, academic and industrial stakeholders contribute from a dual vision, mostly linked to a large and heterogeneous heritage of developments and adoption of civilian cybersecurity capabilities. In this context, augmenting the conscious of the context and warfare environment, risks and impacts of cyber threats on kinetic actuations became a critical rule-changer that military decision-makers are considering. A major challenge on acquiring mission-centric Cyber Situational Awareness (CSA) is the dynamic inference and assessment of the vertical propagations from situations that occurred at the mission supportive Information and Communications Technologies (ICT), up to their relevance at military tactical, operational and strategical views. In order to contribute on acquiring CSA, this paper addresses a major gap in the cyber defence state-of-the-art: the dynamic identification of Key Cyber Terrains (KCT) on a mission-centric context. Accordingly, the proposed KCT identification approach explores the dependency degrees among tasks and assets defined by commanders as part of the assessment criteria. These are correlated with the discoveries on the operational network and the asset vulnerabilities identified thorough the supported mission development. The proposal is presented as a reference model that reveals key aspects for mission-centric KCT analysis and supports its enforcement and further enforcement by including an illustrative application case.

相關內容

This paper proposes a novel mission planning platform, capable of efficiently deploying a team of UAVs to cover complex-shaped areas, in various remote sensing applications. Under the hood lies a novel optimization scheme for grid-based methods, utilizing Simulated Annealing algorithm, that significantly increases the achieved percentage of coverage and improves the qualitative features of the generated paths. Extensive simulated evaluation in comparison with a state-of-the-art alternative methodology, for coverage path planning (CPP) operations, establishes the performance gains in terms of achieved coverage and overall duration of the generated missions. On top of that, DARP algorithm is employed to allocate sub-tasks to each member of the swarm, taking into account each UAV's sensing and operational capabilities, their initial positions and any no-fly-zones possibly defined inside the operational area. This feature is of paramount importance in real-life applications, as it has the potential to achieve tremendous performance improvements in terms of time demanded to complete a mission, while at the same time it unlocks a wide new range of applications, that was previously not feasible due to the limited battery life of UAVs. In order to investigate the actual efficiency gains that are introduced by the multi-UAV utilization, a simulated study is performed as well. All of these capabilities are packed inside an end-to-end platform that eases the utilization of UAVs' swarms in remote sensing applications. Its versatility is demonstrated via two different real-life applications: (i) a photogrametry for precision agriculture and (ii) an indicative search and rescue for first responders missions, that were performed utilizing a swarm of commercial UAVs. The source code can be found at: //github.com/savvas-ap/mCPP-optimized-DARP

Non-Fungible Tokens (NFTs) have emerged as a way to collect digital art as well as an investment vehicle. Despite having been popularized only recently, NFT markets have witnessed several high-profile (and high-value) asset sales and a tremendous growth in trading volumes over the last year. Unfortunately, these marketplaces have not yet received much security scrutiny. Instead, most academic research has focused on attacks against decentralized finance (DeFi) protocols and automated techniques to detect smart contract vulnerabilities. To the best of our knowledge, we are the first to study the market dynamics and security issues of the multi-billion dollar NFT ecosystem. In this paper, we first present a systematic overview of how the NFT ecosystem works, and we identify three major actors: marketplaces, external entities, and users. We perform an in-depth analysis of the top 8 marketplaces (ranked by transaction volume) to discover potential issues associated with such marketplaces. Many of these issues can lead to substantial financial losses. We also collected a large amount of asset and event data pertaining to the NFTs being traded in the examined marketplaces. We automatically analyze this data to understand how the entities external to the blockchain are able to interfere with NFT markets, leading to serious consequences, and quantify the malicious trading behaviors carried out by users under the cloak of anonymity.

In this paper, we propose a novel class of symmetric key distribution protocols that leverages basic security primitives offered by low-cost, hardware chipsets containing millions of synchronized self-powered timers. The keys are derived from the temporal dynamics of a physical, micro-scale time-keeping device which makes the keys immune to any potential side-channel attacks, malicious tampering, or snooping. Using the behavioral model of the self-powered timers, we first show that the derived key-strings can pass the randomness test as defined by the National Institute of Standards and Technology (NIST) suite. The key-strings are then used in two SPoTKD (Self-Powered Timer Key Distribution) protocols that exploit the timer's dynamics as one-way functions: (a) protocol 1 facilitates secure communications between a user and a remote Server, and (b) protocol 2 facilitates secure communications between two users. In this paper, we investigate the security of these protocols under standard model and against different adversarial attacks. Using Monte-Carlo simulations, we also investigate the robustness of these protocols in the presence of real-world operating conditions and propose error-correcting SPoTKD protocols to mitigate these noise-related artifacts.

One of the most critical aspects of enabling next-generation wireless technologies is developing an accurate and consistent channel model to be validated effectively with the help of real-world measurements. From this point of view, remarkable research has recently been conducted to model propagation channels involving the modification of the wireless propagation environment through the inclusion of reconfigurable intelligent surfaces (RISs). This study mainly aims to present a vision on channel modeling strategies for the RIS-empowered communications systems considering the state-of-the-art channel and propagation modeling efforts in the literature. Moreover, it is also desired to draw attention to open-source and standard-compliant physical channel modeling efforts to provide comprehensive insights regarding the practical use-cases of RISs in future wireless networks.

We present F-PKI, an enhancement to the HTTPS public-key infrastructure (or web PKI) that gives trust flexibility to both clients and domain owners, and enables certification authorities (CAs) to enforce stronger security measures. In today's web PKI, all CAs are equally trusted, and security is defined by the weakest link. We address this problem by introducing trust flexibility in two dimensions: with F-PKI, each domain owner can define a domain policy (specifying, for example, which CAs are authorized to issue certificates for their domain name) and each client can set or choose a validation policy based on trust levels. F-PKI thus supports a property that is sorely needed in today's Internet: trust heterogeneity. Different parties can express different trust preferences while still being able to verify all certificates. In contrast, today's web PKI only allows clients to fully distrust suspicious/misbehaving CAs, which is likely to cause collateral damage in the form of legitimate certificates being rejected. Our contribution is to present a system that is backward compatible, provides sensible security properties to both clients and domain owners, ensures the verifiability of all certificates, and prevents downgrade attacks. Furthermore, F-PKI provides a ground for innovation, as it gives CAs an incentive to deploy new security measures to attract more customers, without having these measures undercut by vulnerable CAs.

Intelligent reflecting surface (IRS) has emerged as a key enabling technology to realize smart and reconfigurable radio environment for wireless communications, by digitally controlling the signal reflection via a large number of passive reflecting elements in real-time. Different from conventional wireless communication techniques that only adapt to but have no or limited control over dynamic wireless channels, IRS provides a new and cost-effective means to combat the wireless channel impairments in a proactive manner. However, despite its great potential, IRS faces new and unique challenges in its efficient integration into wireless communication systems, especially its channel estimation and passive beamforming design under various practical hardware constraints. In this paper, we provide a comprehensive survey on the up-to-date research in IRS-aided wireless communications, with an emphasis on the promising solutions to tackle practical design issues. Furthermore, we discuss new and emerging IRS architectures and applications as well as their practical design problems to motivate future research.

Industry 4.0 uses a subset of the IoT, named Industrial IoT (IIoT), to achieve connectivity, interoperability, and decentralization. The deployment of industrial networks rarely considers security by design, but this becomes imperative in smart manufacturing as connectivity increases. The combination of OT and IT infrastructures in Industry 4.0 adds new security threats beyond those of traditional industrial networks. Defence-in-Depth (DiD) strategies tackle the complexity of this problem by providing multiple defense layers, each of these focusing on a particular set of threats. Additionally, the strict requirements of IIoT networks demand lightweight encryption algorithms. Nevertheless, these ciphers must provide E2E (End-to-End) security, as data passes through intermediate entities or middleboxes before reaching their destination. If compromised, middleboxes could expose vulnerable information to potential attackers if it is not encrypted throughout this path. This paper presents an analysis of the most relevant security strategies in Industry 4.0, focusing primarily on DiD. With these in mind, it proposes a combination of DiD, an encryption algorithm called Attribute-Based-Encryption (ABE), and object security (i.e., OSCORE) to get an E2E security approach. This analysis is a critical first step to developing more complex and lightweight security frameworks suitable for Industry 4.0.

Security ceremonies still fail despite decades of efforts by researchers and practitioners. Attacks are often a cunning amalgam of exploits for technical systems and of forms of human behaviour. For example, this is the case with the recent news headline of a large-scale attack against Electrum Bitcoin wallets, which manages to spread a malicious update of the wallet app. I therefore set out to look at things through a different lens. I make the (metaphorical) hypothesis that human ancestors arrived on Earth along with security ceremonies from a very far planet, the Cybersecurity planet. My hypothesis continues, in that studying (by huge telescopes) the surface of Cybersecurity in combination with the logical projection on that surface of what happens on Earth is beneficial for us earthlings. I have spotted four cities so far on the remote planet. Democratic City features security ceremonies that allow inhabitants to follow personal paths of practice and, for example, make errors or be driven by emotions. By contrast, security ceremonies in Dictatorial City compel inhabitants to comply, thus behaving like programmed automata. Security ceremonies in Beautiful City are so beautiful that inhabitants just love to follow them precisely. Invisible City has security ceremonies that are not perceivable, hence inhabitants feel like they never encounter any. Incidentally, we use the words "democratic" and "dictatorial" without any political connotation. A key argument I shall develop is that all cities but Democratic City address the human factor, albeit in different ways. In the light of these findings, I will also discuss security ceremonies of our planet, such as WhatsApp web login and flight boarding, and explore room for improving them based upon the current understanding of Cybersecurity.

Augmented reality technology is one of the leading technologies in the context of Industry 4.0. The promising potential application of augmented reality in industrial production systems has received much attention, which led to the concept of industrial augmented reality. On the one hand, this technology provides a suitable platform that facilitates the registration of information and access to them to help make decisions and allows concurrent training for the user while executing the production processes. This leads to increased work speed and accuracy of the user as a process operator and consequently offers economic benefits to the companies. Moreover, recent advances in the internet of things, smart sensors, and advanced algorithms have increased the possibility of widespread and more effective use of augmented reality. Currently, many research pieces are being done to expand the application of augmented reality and increase its effectiveness in industrial production processes. This research demonstrates the influence of augmented reality in Industry 4.0 while critically reviewing the industrial augmented reality history. Afterward, the paper discusses the critical role of industrial augmented reality by analyzing some use cases and their prospects. With a systematic analysis, this paper discusses the main future directions for industrial augmented reality applications in industry 4.0. The article investigates various areas of application for this technology and its impact on improving production conditions. Finally, the challenges that this technology faces and its research opportunities are discussed.

We present SkelNetOn 2019 Challenge and Deep Learning for Geometric Shape Understanding workshop to utilize existing and develop novel deep learning architectures for shape understanding. We observed that unlike traditional segmentation and detection tasks, geometry understanding is still a new area for investigation using deep learning techniques. SkelNetOn aims to bring together researchers from different domains to foster learning methods on global shape understanding tasks. We aim to improve and evaluate the state-of-the-art shape understanding approaches, and to serve as reference benchmarks for future research. Similar to other challenges in computer vision domain, SkelNetOn tracks propose three datasets and corresponding evaluation methodologies; all coherently bundled in three competitions with a dedicated workshop co-located with CVPR 2019 conference. In this paper, we describe and analyze characteristics of each dataset, define the evaluation criteria of the public competitions, and provide baselines for each task.

北京阿比特科技有限公司