As software becomes more complex and assumes an even greater role in our lives, formal verification is set to become the gold standard in securing software systems into the future, since it can guarantee the absence of errors and entire classes of attack. Recent advances in formal verification are being used to secure everything from unmanned drones to the internet. At the same time, the usable security research community has made huge progress in improving the usability of security products and end-users comprehension of security issues. However, there have been no human-centered studies focused on the impact of formal verification on the use and adoption of formally verified software products. We propose a research agenda to fill this gap and to contribute with the first collection of studies on people's mental models on formal verification and associated security and privacy guarantees and threats. The proposed research has the potential to increase the adoption of more secure products and it can be directly used by the security and formal methods communities to create more effective and secure software tools.
Artificial intelligence is already ubiquitous, and is increasingly being used to autonomously make ever more consequential decisions. However, there has been relatively little research into the existing and possible consequences for population health equity. A narrative review was undertaken using a hermeneutic approach to explore current and future uses of narrow AI and automated decision systems (ADS) in medicine and public health, issues that have emerged, and implications for equity. Accounts reveal a tremendous expectation on AI to transform medical and public health practices. Prominent demonstrations of AI capability - particularly in diagnostic decision making, risk prediction, and surveillance - are stimulating rapid adoption, spurred by COVID-19. Automated decisions being made have significant consequences for individual and population health and wellbeing. Meanwhile, it is evident that hazards including bias, incontestability, and privacy erosion have emerged in sensitive domains such as criminal justice where narrow AI and ADS are in common use. Reports of issues arising from their use in health are already appearing. As the use of ADS in health expands, it is probable that these hazards will manifest more widely. Bias, incontestability, and privacy erosion give rise to mechanisms by which existing social, economic and health disparities are perpetuated and amplified. Consequently, there is a significant risk that use of ADS in health will exacerbate existing population health inequities. The industrial scale and rapidity with which ADS can be applied heightens the risk to population health equity. It is incumbent on health practitioners and policy makers therefore to explore the potential implications of using ADS, to ensure the use of artificial intelligence promotes population health and equity.
Bitcoin is the most secure blockchain in the world, supported by the immense hash power of its Proof-of-Work miners, but consumes huge amount of energy. Proof-of-Stake chains are energy-efficient, have fast finality and accountability, but face several fundamental security issues: susceptibility to non-slashable long-range safety attacks, non-slashable transaction censorship and stalling attacks and difficulty to bootstrap new PoS chains from low token valuation. We propose Babylon, a blockchain platform which combines the best of both worlds by reusing the immense Bitcoin hash power to enhance the security of PoS chains. Babylon provides a data-available timestamping service, securing PoS chains by allowing them to timestamp data-available block checkpoints, fraud proofs and censored transactions on Babylon. Babylon miners merge mine with Bitcoin and thus the platform has zero additional energy cost. The security of a Babylon-enhanced PoS protocol is formalized by a cryptoeconomic security theorem which shows slashable safety and liveness guarantees.
Since their proposal in 2016, the FAIR principles have been largely discussed by different communities and initiatives involved in the development of infrastructures to enhance support for data findability, accessibility, interoperability, and reuse. One of the challenges in implementing these principles lies in defining a well-delimited process with organized and detailed actions. This paper presents a workflow of actions that is being adopted in the VODAN BR pilot for generating FAIR (meta)data for COVID-19 research. It provides the understanding of each step of the process, establishing their contribution. In this work, we also evaluate potential tools to (semi)automatize (meta)data treatment whenever possible. Although defined for a particular use case, it is expected that this workflow can be applied for other epidemical research and in other domains, benefiting the entire scientific community.
Artificial Intelligence (AI) has significant potential for product design: AI can check technical and non-technical constraints on products, it can support a quick design of new product variants and new AI methods may also support creativity. But currently product design and AI are separate communities fostering different terms and theories. This makes a mapping of AI approaches to product design needs difficult and prevents new solutions. As a solution, this paper first clarifies important terms and concepts for the interdisciplinary domain of AI methods in product design. A key contribution of this paper is a new classification of design problems using the four characteristics decomposability, inter-dependencies, innovation and creativity. Definitions of these concepts are given where they are lacking. Early mappings of these concepts to AI solutions are sketched and verified using design examples. The importance of creativity in product design and a corresponding gap in AI is pointed out for future research.
Non-Fungible Tokens (NFTs) have emerged as a way to collect digital art as well as an investment vehicle. Despite having been popularized only recently, NFT markets have witnessed several high-profile (and high-value) asset sales and a tremendous growth in trading volumes over the last year. Unfortunately, these marketplaces have not yet received much security scrutiny. Instead, most academic research has focused on attacks against decentralized finance (DeFi) protocols and automated techniques to detect smart contract vulnerabilities. To the best of our knowledge, we are the first to study the market dynamics and security issues of the multi-billion dollar NFT ecosystem. In this paper, we first present a systematic overview of how the NFT ecosystem works, and we identify three major actors: marketplaces, external entities, and users. We perform an in-depth analysis of the top 8 marketplaces (ranked by transaction volume) to discover potential issues associated with such marketplaces. Many of these issues can lead to substantial financial losses. We also collected a large amount of asset and event data pertaining to the NFTs being traded in the examined marketplaces. We automatically analyze this data to understand how the entities external to the blockchain are able to interfere with NFT markets, leading to serious consequences, and quantify the malicious trading behaviors carried out by users under the cloak of anonymity.
Search systems control the exposure of ranked content to searchers. In many cases, creators value not only the exposure of their content but, moreover, an understanding of the specific searches where the content is surfaced. The problem of identifying which queries expose a given piece of content in the ranking results is an important and relatively under-explored search transparency challenge. Exposing queries are useful for quantifying various issues of search bias, privacy, data protection, security, and search engine optimization. Exact identification of exposing queries in a given system is computationally expensive, especially in dynamic contexts such as web search. We explore the feasibility of approximate exposing query identification (EQI) as a retrieval task by reversing the role of queries and documents in two classes of search systems: dense dual-encoder models and traditional BM25 models. We then propose how this approach can be improved through metric learning over the retrieval embedding space. We further derive an evaluation metric to measure the quality of a ranking of exposing queries, as well as conducting an empirical analysis focusing on various practical aspects of approximate EQI. Overall, our work contributes a novel conception of transparency in search systems and computational means of achieving it.
Postal voting is growing rapidly in the U.S., with 43% of voters casting ballots by mail in 2020, yet until recently there has been little research about extending the protections of end-to-end verifiable (E2E-V) election schemes to vote-by-mail contexts. The first - and to date, only - framework to focus on this setting is STROBE, which has important usability limitations. In this work, we present two approaches, RemoteVote and SAFE Vote, that allow mail-in voters to benefit from E2E-V without changing the voter experience for those who choose not to participate in verification. To evaluate these systems and compare them with STROBE, we consider an expansive set of properties, including novel attributes of usability and verifiability, several of which have applicability beyond vote-by-mail contexts. We hope that our work will help catalyze further progress towards universal applicability of E2E-V for real-world elections.
Unmanned Aerial Vehicles (UAVs), also known as drones, have exploded in every segment present in todays business industry. They have scope in reinventing old businesses, and they are even developing new opportunities for various brands and franchisors. UAVs are used in the supply chain, maintaining surveillance and serving as mobile hotspots. Although UAVs have potential applications, they bring several societal concerns and challenges that need addressing in public safety, privacy, and cyber security. UAVs are prone to various cyber-attacks and vulnerabilities; they can also be hacked and misused by malicious entities resulting in cyber-crime. The adversaries can exploit these vulnerabilities, leading to data loss, property, and destruction of life. One can partially detect the attacks like false information dissemination, jamming, gray hole, blackhole, and GPS spoofing by monitoring the UAV behavior, but it may not resolve privacy issues. This paper presents secure communication between UAVs using blockchain technology. Our approach involves building smart contracts and making a secure and reliable UAV adhoc network. This network will be resilient to various network attacks and is secure against malicious intrusions.
Connected and automated vehicles have shown great potential in improving traffic mobility and reducing emissions, especially at unsignalized intersections. Previous research has shown that vehicle passing order is the key influencing factor in improving intersection traffic mobility. In this paper, we propose a graph-based cooperation method to formalize the conflict-free scheduling problem at an unsignalized intersection. Based on graphical analysis, a vehicle's trajectory conflict relationship is modeled as a conflict directed graph and a coexisting undirected graph. Then, two graph-based methods are proposed to find the vehicle passing order. The first is an improved depth-first spanning tree algorithm, which aims to find the local optimal passing order vehicle by vehicle. The other novel method is a minimum clique cover algorithm, which identifies the global optimal solution. Finally, a distributed control framework and communication topology are presented to realize the conflict-free cooperation of vehicles. Extensive numerical simulations are conducted for various numbers of vehicles and traffic volumes, and the simulation results prove the effectiveness of the proposed algorithms.
Human factors engineering usually emphasizes the research of human-computer interaction and does not pay attention to societal and organizational factors. Traditional sociotechnical systems (STS) theory has been widely used, but there are many new characteristics in the STS environment as we enter the intelligence era, resulting in the limitations of traditional STS. Based on the "user-centered design" philosophy and the perspective of human factors engineering, this paper proposes a new framework of intelligent sociotechnical systems (iSTS) and outlines the new characteristics of iSTS as well as its implications to the development of intelligent systems. Finally, this paper puts forward recommendations for future research and application of iSTS in the aspects of human factors engineering methodology and its research agenda.