亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent years have witnessed the great success of blind image quality assessment (BIQA) in various task-specific scenarios, which present invariable distortion types and evaluation criteria. However, due to the rigid structure and learning framework, they cannot apply to the cross-task BIQA scenario, where the distortion types and evaluation criteria keep changing in practical applications. This paper proposes a scalable incremental learning framework (SILF) that could sequentially conduct BIQA across multiple evaluation tasks with limited memory capacity. More specifically, we develop a dynamic parameter isolation strategy to sequentially update the task-specific parameter subsets, which are non-overlapped with each other. Each parameter subset is temporarily settled to Remember one evaluation preference toward its corresponding task, and the previously settled parameter subsets can be adaptively reused in the following BIQA to achieve better performance based on the task relevance. To suppress the unrestrained expansion of memory capacity in sequential tasks learning, we develop a scalable memory unit by gradually and selectively pruning unimportant neurons from previously settled parameter subsets, which enable us to Forget part of previous experiences and free the limited memory capacity for adapting to the emerging new tasks. Extensive experiments on eleven IQA datasets demonstrate that our proposed method significantly outperforms the other state-of-the-art methods in cross-task BIQA.

相關內容

Recent advances in Transformer-based large language models (LLMs) have led to significant performance improvements across many tasks. These gains come with a drastic increase in the models' size, potentially leading to slow and costly use at inference time. In practice, however, the series of generations made by LLMs is composed of varying levels of difficulty. While certain predictions truly benefit from the models' full capacity, other continuations are more trivial and can be solved with reduced compute. In this work, we introduce Confident Adaptive Language Modeling (CALM), a framework for dynamically allocating different amounts of compute per input and generation timestep. Early exit decoding involves several challenges that we address here, such as: (1) what confidence measure to use; (2) connecting sequence-level constraints to local per-token exit decisions; and (3) attending back to missing hidden representations due to early exits in previous tokens. Through theoretical analysis and empirical experiments on three diverse text generation tasks, we demonstrate the efficacy of our framework in reducing compute -- potential speedup of up to $\times 3$ -- while provably maintaining high performance.

In mixed-initiative co-creation tasks, where a human and a machine jointly create items, it is valuable for the generative system to provide multiple relevant suggestions to the designer. Quality-diversity algorithms have been commonly used for this, as they can provide diverse suggestions that are representative of salient areas of the solution space, showcasing solutions with both high fitness and different properties that the designer might be interested in. Since these suggestions are what drives the search process, it is important that they provide the right inspiration for the designer, as well as not stray too far away from the search trajectory, i.e., they should be aligned with what the designer is looking for. Additionally, in most cases, many interactions with the system are required before the designer is content with a solution. In this work, we tackle both of these problems with an interactive constrained MAP-Elites system by crafting emitters that are able to learn the preferences of the designer and use them in automated hidden steps. By learning such preferences, we remain aligned with the designer's intentions, and by applying automatic steps, we generate more solutions per system interaction, giving a larger number of choices to the designer and speeding up the search process. We propose a general framework for preference-learning emitters and test it on a procedural content generation task in the video game Space Engineers. In an internal study, we show that preference-learning emitters allow users to more quickly find relevant solutions.

A wide range of NLP tasks benefit from the fine-tuning of pretrained language models (PLMs). However, a number of redundant parameters which contribute less to the downstream task are observed in a directly fine-tuned model. We consider the gap between pretraining and downstream tasks hinders the training of these redundant parameters, and results in a suboptimal performance of the overall model. In this paper, we present PATS (Perturbation According To Sensitivity), a noisy training mechanism which considers each parameter's importance in the downstream task to help fine-tune PLMs. The main idea of PATS is to add bigger noise to parameters with lower sensitivity and vice versa, in order to activate more parameters' contributions to downstream tasks without affecting the sensitive ones much. Extensive experiments conducted on different tasks of the GLUE benchmark show PATS can consistently empower the fine-tuning of different sizes of PLMs, and the parameters in the well-performing models always have more concentrated distributions of sensitivities, which experimentally proves the effectiveness of our method.

Grouping together similar elements in datasets is a common task in data mining and machine learning. In this paper, we study parallel algorithms for correlation clustering, where each pair of items is labeled either similar or dissimilar. The task is to partition the elements and the objective is to minimize disagreements, that is, the number of dissimilar elements grouped together and similar elements grouped separately. Our main contribution is a parallel algorithm that achieves a $(3 + \varepsilon)$-approximation to the minimum number of disagreements. Our algorithm builds on the analysis of the PIVOT algorithm by Ailon, Charikar, and Newman [JACM'08] that obtains a $3$-approximation in the centralized setting. Our design allows us to sparsify the input graph by ignoring a large portion of the nodes and edges without a large extra cost as compared to the analysis of PIVOT. This sparsification makes our technique applicable on several models of massive graph processing, such as Massively Parallel Computing (MPC) and graph streaming, where sparse graphs can typically be handled much more efficiently. For linear memory models, such as the linear memory MPC and streaming, our approach yields $O(1)$ time algorithms, where the runtime is independent of $\varepsilon$, which only appears in the memory demand.

Graph few-shot learning is of great importance among various graph learning tasks. Under the few-shot scenario, models are often required to conduct classification given limited labeled samples. Existing graph few-shot learning methods typically leverage Graph Neural Networks (GNNs) and perform classification across a series of meta-tasks. Nevertheless, these methods generally rely on the original graph (i.e., the graph that the meta-task is sampled from) to learn node representations. Consequently, the graph structure used in each meta-task is identical. Since the class sets are different across meta-tasks, node representations should be learned in a task-specific manner to promote classification performance. Therefore, to adaptively learn node representations across meta-tasks, we propose a novel framework that learns a task-specific structure for each meta-task. To handle the variety of nodes across meta-tasks, we extract relevant nodes and learn task-specific structures based on node influence and mutual information. In this way, we can learn node representations with the task-specific structure tailored for each meta-task. We further conduct extensive experiments on five node classification datasets under both single- and multiple-graph settings to validate the superiority of our framework over the state-of-the-art baselines. Our code is provided at //github.com/SongW-SW/GLITTER.

Feature selection plays a vital role in promoting the classifier's performance. However, current methods ineffectively distinguish the complex interaction in the selected features. To further remove these hidden negative interactions, we propose a GA-like dynamic probability (GADP) method with mutual information which has a two-layer structure. The first layer applies the mutual information method to obtain a primary feature subset. The GA-like dynamic probability algorithm, as the second layer, mines more supportive features based on the former candidate features. Essentially, the GA-like method is one of the population-based algorithms so its work mechanism is similar to the GA. Different from the popular works which frequently focus on improving GA's operators for enhancing the search ability and lowering the converge time, we boldly abandon GA's operators and employ the dynamic probability that relies on the performance of each chromosome to determine feature selection in the new generation. The dynamic probability mechanism significantly reduces the parameter number in GA that making it easy to use. As each gene's probability is independent, the chromosome variety in GADP is more notable than in traditional GA, which ensures GADP has a wider search space and selects relevant features more effectively and accurately. To verify our method's superiority, we evaluate our method under multiple conditions on 15 datasets. The results demonstrate the outperformance of the proposed method. Generally, it has the best accuracy. Further, we also compare the proposed model to the popular heuristic methods like POS, FPA, and WOA. Our model still owns advantages over them.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.

北京阿比特科技有限公司