亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The proliferation of sensors over the last years has generated large amounts of raw data, forming data streams that need to be processed. In many cases, cloud resources are used for such processing, exploiting their flexibility, but these sensor streaming applications often need to support operational and control actions that have real-time and low-latency requirements that go beyond the cost effective and flexible solutions supported by existing cloud frameworks, such as Apache Kafka, Apache Spark Streaming, or Map-Reduce Streams. In this paper, we describe a model-driven and stepwise refinement methodological approach for streaming applications executed over clouds. The central role is assigned to a set of Petri Net models for specifying functional and non-functional requirements. They support model reuse, and a way to combine formal analysis, simulation, and approximate computation of minimal and maximal boundaries of non-functional requirements when the problem is either mathematically or computationally intractable. We show how our proposal can assist developers in their design and implementation decisions from a performance perspective. Our methodology allows to conduct performance analysis: The methodology is intended for all the engineering process stages, and we can (i) analyse how it can be mapped onto cloud resources, and (ii) obtain key performance indicators, including throughput or economic cost, so that developers are assisted in their development tasks and in their decision taking. In order to illustrate our approach, we make use of the pipelined wavefront array.

相關內容

There has been a growing interest in recent years in modelling multiple modalities (or views) of data to for example, understand the relationship between modalities or to generate missing data. Multi-view autoencoders have gained significant traction for their adaptability and versatility in modelling multi-modal data, demonstrating an ability to tailor their approach to suit the characteristics of the data at hand. However, most multi-view autoencoders have inconsistent notation and are often implemented using different coding frameworks. To address this, we present a unified mathematical framework for multi-view autoencoders, consolidating their formulations. Moreover, we offer insights into the motivation and theoretical advantages of each model. To facilitate accessibility and practical use, we extend the documentation and functionality of the previously introduced \texttt{multi-view-AE} library. This library offers Python implementations of numerous multi-view autoencoder models, presented within a user-friendly framework. Through benchmarking experiments, we evaluate our implementations against previous ones, demonstrating comparable or superior performance. This work aims to establish a cohesive foundation for multi-modal modelling, serving as a valuable educational resource in the field.

Some theories on data flow security are based on order-theoretical concepts, most commonly on lattice concepts. This paper presents a correspondence between security concepts and partial order concepts, by which the former become an application of the latter. The formalization involves concepts of data flow, equivalence classes of entities that can access the same data, and labels. Efficient, well-known algorithms to obtain one of these from one of the others are presented. Security concepts such as secrecy (also called confidentiality), integrity and conflict can be expressed in this theory. Further, it is shown that complex tuple labels used in the literature to express security levels can be translated into equivalent set labels. A consequence is that any network's data flow or access control relationships can be defined by assigning simple set labels to the entities. Finally, it is shown how several partial orders can be combined when different data flows must coexist.

We present HiRA-Pro, a novel procedure to align, at high spatio-temporal resolutions, multimodal signals from real-world processes and systems that exhibit diverse transient, nonlinear stochastic dynamics, such as manufacturing machines. It is based on discerning and synchronizing the process signatures of salient kinematic and dynamic events in these disparate signals. HiRA-Pro addresses the challenge of aligning data with sub-millisecond phenomena, where traditional timestamp, external trigger, or clock-based alignment methods fall short. The effectiveness of HiRA-Pro is demonstrated in a smart manufacturing context, where it aligns data from 13+ channels acquired during 3D-printing and milling operations on an Optomec-LENS MTS 500 hybrid machine. The aligned data is then voxelized to generate 0.25 second aligned data chunks that correspond to physical voxels on the produced part. The superiority of HiRA-Pro is further showcased through case studies in additive manufacturing, demonstrating improved machine learning-based predictive performance due to precise multimodal data alignment. Specifically, testing classification accuracies improved by almost 35% with the application of HiRA-Pro, even with limited data, allowing for precise localization of artifacts. The paper also provides a comprehensive discussion on the proposed method, its applications, and comparative qualitative analysis with a few other alignment methods. HiRA-Pro achieves temporal-spatial resolutions of 10-1000 us and 100 um in order to generate datasets that register with physical voxels on the 3D-printed and milled part. These resolutions are at least an order of magnitude finer than the existing alignment methods that employ individual timestamps, statistical correlations, or common clocks, which achieve precision of hundreds of milliseconds.

Charts, figures, and text derived from data play an important role in decision making, from data-driven policy development to day-to-day choices informed by online articles. Making sense of, or fact-checking, outputs means understanding how they relate to the underlying data. Even for domain experts with access to the source code and data sets, this poses a significant challenge. In this paper we introduce a new program analysis framework which supports interactive exploration of fine-grained I/O relationships directly through computed outputs, making use of dynamic dependence graphs. Our main contribution is a novel notion in data provenance which we call related inputs, a relation of mutual relevance or "cognacy" which arises between inputs when they contribute to common features of the output. Queries of this form allow readers to ask questions like "What outputs use this data element, and what other data elements are used along with it?". We show how Jonsson and Tarski's concept of conjugate operators on Boolean algebras appropriately characterises the notion of cognacy in a dependence graph, and give a procedure for computing related inputs over such a graph.

A preference-based subjective evaluation is a key method for evaluating generative media reliably. However, its huge combinations of pairs prohibit it from being applied to large-scale evaluation using crowdsourcing. To address this issue, we propose an automatic optimization method for preference-based subjective evaluation in terms of pair combination selections and allocation of evaluation volumes with online learning in a crowdsourcing environment. We use a preference-based online learning method based on a sorting algorithm to identify the total order of evaluation targets with minimum sample volumes. Our online learning algorithm supports parallel and asynchronous execution under fixed-budget conditions required for crowdsourcing. Our experiment on preference-based subjective evaluation of synthetic speech shows that our method successfully optimizes the test by reducing pair combinations from 351 to 83 and allocating optimal evaluation volumes for each pair ranging from 30 to 663 without compromising evaluation accuracies and wasting budget allocations.

Important advances in pillar domains are derived from exploiting query-logs which represents users interest and preferences. Deep understanding of users provides useful knowledge which can influence strongly decision-making. In this work, we want to extract valuable information from Linked Open Data (LOD) query-logs. LOD logs have experienced significant growth due to the large exploitation of LOD datasets. However, exploiting these logs is a difficult task because of their complex structure. Moreover, these logs suffer from many risks related to their Quality and Provenance, impacting their trust. To tackle these issues, we start by clearly defining the ecosystem of LOD query-logs. Then, we provide an end-to-end solution to exploit these logs. At the end, real LOD logs are used and a set of experiments are conducted to validate the proposed solution.

Off-policy evaluation (OPE) is the problem of estimating the value of a target policy using historical data collected under a different logging policy. OPE methods typically assume overlap between the target and logging policy, enabling solutions based on importance weighting and/or imputation. In this work, we approach OPE without assuming either overlap or a well-specified model by considering a strategy based on partial identification under non-parametric assumptions on the conditional mean function, focusing especially on Lipschitz smoothness. Under such smoothness assumptions, we formulate a pair of linear programs whose optimal values upper and lower bound the contributions of the no-overlap region to the off-policy value. We show that these linear programs have a concise closed form solution that can be computed efficiently and that their solutions converge, under the Lipschitz assumption, to the sharp partial identification bounds on the off-policy value. Furthermore, we show that the rate of convergence is minimax optimal, up to log factors. We deploy our methods on two semi-synthetic examples, and obtain informative and valid bounds that are tighter than those possible without smoothness assumptions.

Differences in staining and imaging procedures can cause significant color variations in histopathology images, leading to poor generalization when deploying deep-learning models trained from a different data source. Various color augmentation methods have been proposed to generate synthetic images during training to make models more robust, eliminating the need for stain normalization during test time. Many color augmentation methods leverage domain labels to generate synthetic images. This approach causes three significant challenges to scaling such a model. Firstly, incorporating data from a new domain into deep-learning models trained on existing domain labels is not straightforward. Secondly, dependency on domain labels prevents the use of pathology images without domain labels to improve model performance. Finally, implementation of these methods becomes complicated when multiple domain labels (e.g., patient identification, medical center, etc) are associated with a single image. We introduce ContriMix, a novel domain label free stain color augmentation method based on DRIT++, a style-transfer method. Contrimix leverages sample stain color variation within a training minibatch and random mixing to extract content and attribute information from pathology images. This information can be used by a trained ContriMix model to create synthetic images to improve the performance of existing classifiers. ContriMix outperforms competing methods on the Camelyon17-WILDS dataset. Its performance is consistent across different slides in the test set while being robust to the color variation from rare substances in pathology images. We make our code and trained ContriMix models available for research use. The code for ContriMix can be found at //gitlab.com/huutan86/contrimix

Temporal network data is often encoded as time-stamped interaction events between senders and receivers, such as co-authoring scientific articles or communication via email. A number of relational event frameworks have been proposed to address specific issues raised by complex temporal dependencies. These models attempt to quantify how individual behaviour, endogenous and exogenous factors, as well as interactions with other individuals modify the network dynamics over time. It is often of interest to determine whether changes in the network can be attributed to endogenous mechanisms reflecting natural relational tendencies, such as reciprocity or triadic effects. The propensity to form or receive ties can also, at least partially, be related to actor attributes. Nodal heterogeneity in the network is often modelled by including actor-specific or dyadic covariates. However, comprehensively capturing all personality traits is difficult in practice, if not impossible. A failure to account for heterogeneity may confound the substantive effect of key variables of interest. This work shows that failing to account for node level sender and receiver effects can induce ghost triadic effects. We propose a random-effect extension of the relational event model to deal with these problems. We show that it is often effective over more traditional approaches, such as in-degree and out-degree statistics. These results that the violation of the hierarchy principle due to insufficient information about nodal heterogeneity can be resolved by including random effects in the relational event model as a standard.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司