Some theories on data flow security are based on order-theoretical concepts, most commonly on lattice concepts. This paper presents a correspondence between security concepts and partial order concepts, by which the former become an application of the latter. The formalization involves concepts of data flow, equivalence classes of entities that can access the same data, and labels. Efficient, well-known algorithms to obtain one of these from one of the others are presented. Security concepts such as secrecy (also called confidentiality), integrity and conflict can be expressed in this theory. Further, it is shown that complex tuple labels used in the literature to express security levels can be translated into equivalent set labels. A consequence is that any network's data flow or access control relationships can be defined by assigning simple set labels to the entities. Finally, it is shown how several partial orders can be combined when different data flows must coexist.
Recent advances unveiled physical neural networks as promising machine learning platforms, offering faster and more energy-efficient information processing. Compared with extensively-studied optical neural networks, the development of mechanical neural networks (MNNs) remains nascent and faces significant challenges, including heavy computational demands and learning with approximate gradients. Here, we introduce the mechanical analogue of in situ backpropagation to enable highly efficient training of MNNs. We demonstrate that the exact gradient can be obtained locally in MNNs, enabling learning through their immediate vicinity. With the gradient information, we showcase the successful training of MNNs for behavior learning and machine learning tasks, achieving high accuracy in regression and classification. Furthermore, we present the retrainability of MNNs involving task-switching and damage, demonstrating the resilience. Our findings, which integrate the theory for training MNNs and experimental and numerical validations, pave the way for mechanical machine learning hardware and autonomous self-learning material systems.
In this paper, we construct and analyze divergence-free finite element methods for the Stokes problem on smooth domains. The discrete spaces are based on the Scott-Vogelius finite element pair of arbitrary polynomial degree greater than two. By combining the Piola transform with the classical isoparametric framework, and with a judicious choice of degrees of freedom, we prove that the method converges with optimal order in the energy norm. We also show that the discrete velocity error converges with optimal order in the $L^2$-norm. Numerical experiments are presented, which support the theoretical results.
In this paper, we introduce the cumulative past information generating function (CPIG) and relative cumulative past information generating function (RCPIG). We study its properties. We establish its relation with generalized cumulative past entropy (GCPE). We defined CPIG stochastic order and its relation with dispersive order. We provide the results for the CPIG measure of the convoluted random variables in terms of the measures of its components. We found some inequality relating to Shannon entropy, CPIG and GCPE. Some characterization and estimation results are also discussed regarding CPIG. We defined divergence measures between two random variables, Jensen-cumulative past information generating function(JCPIG), Jensen fractional cumulative past entropy measure, cumulative past Taneja entropy, and Jensen cumulative past Taneja entropy information measure.
Test-negative designs are widely used for post-market evaluation of vaccine effectiveness, particularly in cases where randomization is not feasible. Differing from classical test-negative designs where only healthcare-seekers with symptoms are included, recent test-negative designs have involved individuals with various reasons for testing, especially in an outbreak setting. While including these data can increase sample size and hence improve precision, concerns have been raised about whether they introduce bias into the current framework of test-negative designs, thereby demanding a formal statistical examination of this modified design. In this article, using statistical derivations, causal graphs, and numerical simulations, we show that the standard odds ratio estimator may be biased if various reasons for testing are not accounted for. To eliminate this bias, we identify three categories of reasons for testing, including symptoms, disease-unrelated reasons, and case contact tracing, and characterize associated statistical properties and estimands. Based on our characterization, we show how to consistently estimate each estimand via stratification. Furthermore, we describe when these estimands correspond to the same vaccine effectiveness parameter, and, when appropriate, propose a stratified estimator that can incorporate multiple reasons for testing and improve precision. The performance of our proposed method is demonstrated through simulation studies.
We present a novel data-oriented statistical framework that assesses the presumed Gaussian dependence structure in a pairwise setting. This refers to both multivariate normality and normal copula goodness-of-fit testing. The proposed test clusters the data according to the 20/60/20 rule and confronts conditional covariance (or correlation) estimates on the obtained subsets. The corresponding test statistic has a natural practical interpretation, desirable statistical properties, and asymptotic pivotal distribution under the multivariate normality assumption. We illustrate the usefulness of the introduced framework using extensive power simulation studies and show that our approach outperforms popular benchmark alternatives. Also, we apply the proposed methodology to commodities market data.
We introduce a framework rooted in a rate distortion problem for Markov chains, and show how a suite of commonly used Markov Chain Monte Carlo (MCMC) algorithms are specific instances within it, where the target stationary distribution is controlled by the distortion function. Our approach offers a unified variational view on the optimality of algorithms such as Metropolis-Hastings, Glauber dynamics, the swapping algorithm and Feynman-Kac path models. Along the way, we analyze factorizability and geometry of multivariate Markov chains. Specifically, we demonstrate that induced chains on factors of a product space can be regarded as information projections with respect to a particular divergence. This perspective yields Han--Shearer type inequalities for Markov chains as well as applications in the context of large deviations and mixing time comparison.
One of the main challenges in surrogate modeling is the limited availability of data due to resource constraints associated with computationally expensive simulations. Multi-fidelity methods provide a solution by chaining models in a hierarchy with increasing fidelity, associated with lower error, but increasing cost. In this paper, we compare different multi-fidelity methods employed in constructing Gaussian process surrogates for regression. Non-linear autoregressive methods in the existing literature are primarily confined to two-fidelity models, and we extend these methods to handle more than two levels of fidelity. Additionally, we propose enhancements for an existing method incorporating delay terms by introducing a structured kernel. We demonstrate the performance of these methods across various academic and real-world scenarios. Our findings reveal that multi-fidelity methods generally have a smaller prediction error for the same computational cost as compared to the single-fidelity method, although their effectiveness varies across different scenarios.
In this paper we develop a novel neural network model for predicting implied volatility surface. Prior financial domain knowledge is taken into account. A new activation function that incorporates volatility smile is proposed, which is used for the hidden nodes that process the underlying asset price. In addition, financial conditions, such as the absence of arbitrage, the boundaries and the asymptotic slope, are embedded into the loss function. This is one of the very first studies which discuss a methodological framework that incorporates prior financial domain knowledge into neural network architecture design and model training. The proposed model outperforms the benchmarked models with the option data on the S&P 500 index over 20 years. More importantly, the domain knowledge is satisfied empirically, showing the model is consistent with the existing financial theories and conditions related to implied volatility surface.
We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.
Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.