亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The maximum entropy encoding framework provides a unified perspective for many non-contrastive learning methods like SimSiam, Barlow Twins, and MEC. Inspired by this framework, we introduce Matrix-SSL, a novel approach that leverages matrix information theory to interpret the maximum entropy encoding loss as matrix uniformity loss. Furthermore, Matrix-SSL enhances the maximum entropy encoding method by seamlessly incorporating matrix alignment loss, directly aligning covariance matrices in different branches. Experimental results reveal that Matrix-SSL outperforms state-of-the-art methods on the ImageNet dataset under linear evaluation settings and on MS-COCO for transfer learning tasks. Specifically, when performing transfer learning tasks on MS-COCO, our method outperforms previous SOTA methods such as MoCo v2 and BYOL up to 3.3% with only 400 epochs compared to 800 epochs pre-training. We also try to introduce representation learning into the language modeling regime, achieving 72.3% on the GSM8K dataset by fine-tuning a 7B model using matrix cross-entropy loss, with a margin of 3.1% over the standard cross-entropy loss. Code available at //github.com/yifanzhang-pro/Matrix-SSL.

相關內容

Context Optimization (CoOp) has emerged as a simple yet effective technique for adapting CLIP-like vision-language models to downstream image recognition tasks. Nevertheless, learning compact context with satisfactory base-to-new, domain and cross-task generalization ability while adapting to new tasks is still a challenge. To tackle such a challenge, we propose a lightweight yet generalizable approach termed Compositional Kronecker Context Optimization (CK-CoOp). Technically, the prompt's context words in CK-CoOp are learnable vectors, which are crafted by linearly combining base vectors sourced from a dictionary. These base vectors consist of a non-learnable component obtained by quantizing the weights in the token embedding layer, and a learnable component constructed by applying Kronecker product on several learnable tiny matrices. Intuitively, the compositional structure mitigates the risk of overfitting on training data by remembering more pre-trained knowledge. Meantime, the Kronecker product breaks the non-learnable restrictions of the dictionary, thereby enhancing representation ability with minimal additional parameters. Extensive experiments confirm that CK-CoOp achieves state-of-the-art performance under base-to-new, domain and cross-task generalization evaluation, but also has the metrics of fewer learnable parameters and efficient training and inference speed.

The increasing demand for tabular data analysis calls for transitioning from manual architecture design to Neural Architecture Search (NAS). This transition demands an efficient and responsive anytime NAS approach that is capable of returning current optimal architectures within any given time budget while progressively enhancing architecture quality with increased budget allocation. However, the area of research on Anytime NAS for tabular data remains unexplored. To this end, we introduce ATLAS, the first anytime NAS approach tailored for tabular data. ATLAS introduces a novel two-phase filtering-and-refinement optimization scheme with joint optimization, combining the strengths of both paradigms of training-free and training-based architecture evaluation. Specifically, in the filtering phase, ATLAS employs a new zero-cost proxy specifically designed for tabular data to efficiently estimate the performance of candidate architectures, thereby obtaining a set of promising architectures. Subsequently, in the refinement phase, ATLAS leverages a fixed-budget search algorithm to schedule the training of the promising candidates, so as to accurately identify the optimal architecture. To jointly optimize the two phases for anytime NAS, we also devise a budget-aware coordinator that delivers high NAS performance within constraints. Experimental evaluations demonstrate that our ATLAS can obtain a good-performing architecture within any predefined time budget and return better architectures as and when a new time budget is made available. Overall, it reduces the search time on tabular data by up to 82.75x compared to existing NAS approaches.

Calibration, which establishes the correlation between accuracy and model confidence, is important for LLM development. We design three off-the-shelf calibration methods based on self-consistency (Wang et al., 2022) for math reasoning tasks. Evaluation on two popular benchmarks (GSM8K and MathQA) using strong open-source LLMs (Mistral and LLaMA2), our methods better bridge model confidence and accuracy than existing methods based on p(True) (Kadavath et al., 2022) or logit (Kadavath et al., 2022).

This study proposes a multi-task pseudo-label learning (MPL)-based non-intrusive speech quality assessment model called MTQ-Net. MPL consists of two stages: obtaining pseudo-label scores from a pretrained model and performing multi-task learning. The 3QUEST metrics, namely Speech-MOS (S-MOS), Noise-MOS (N-MOS), and General-MOS (G-MOS), are the assessment targets. The pretrained MOSA-Net model is utilized to estimate three pseudo labels: perceptual evaluation of speech quality (PESQ), short-time objective intelligibility (STOI), and speech distortion index (SDI). Multi-task learning is then employed to train MTQ-Net by combining a supervised loss (derived from the difference between the estimated score and the ground-truth label) and a semi-supervised loss (derived from the difference between the estimated score and the pseudo label), where the Huber loss is employed as the loss function. Experimental results first demonstrate the advantages of MPL compared to training a model from scratch and using a direct knowledge transfer mechanism. Second, the benefit of the Huber loss for improving the predictive ability of MTQ-Net is verified. Finally, the MTQ-Net with the MPL approach exhibits higher overall predictive power compared to other SSL-based speech assessment models.

In this paper, we consider the problem of learning safe policies for probabilistic-constrained reinforcement learning (RL). Specifically, a safe policy or controller is one that, with high probability, maintains the trajectory of the agent in a given safe set. We establish a connection between this probabilistic-constrained setting and the cumulative-constrained formulation that is frequently explored in the existing literature. We provide theoretical bounds elucidating that the probabilistic-constrained setting offers a better trade-off in terms of optimality and safety (constraint satisfaction). The challenge encountered when dealing with the probabilistic constraints, as explored in this work, arises from the absence of explicit expressions for their gradients. Our prior work provides such an explicit gradient expression for probabilistic constraints which we term Safe Policy Gradient-REINFORCE (SPG-REINFORCE). In this work, we provide an improved gradient SPG-Actor-Critic that leads to a lower variance than SPG-REINFORCE, which is substantiated by our theoretical results. A noteworthy aspect of both SPGs is their inherent algorithm independence, rendering them versatile for application across a range of policy-based algorithms. Furthermore, we propose a Safe Primal-Dual algorithm that can leverage both SPGs to learn safe policies. It is subsequently followed by theoretical analyses that encompass the convergence of the algorithm, as well as the near-optimality and feasibility on average. In addition, we test the proposed approaches by a series of empirical experiments. These experiments aim to examine and analyze the inherent trade-offs between the optimality and safety, and serve to substantiate the efficacy of two SPGs, as well as our theoretical contributions.

With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.

We propose GAN-Supervised Learning, a framework for learning discriminative models and their GAN-generated training data jointly end-to-end. We apply our framework to the dense visual alignment problem. Inspired by the classic Congealing method, our GANgealing algorithm trains a Spatial Transformer to map random samples from a GAN trained on unaligned data to a common, jointly-learned target mode. We show results on eight datasets, all of which demonstrate our method successfully aligns complex data and discovers dense correspondences. GANgealing significantly outperforms past self-supervised correspondence algorithms and performs on-par with (and sometimes exceeds) state-of-the-art supervised correspondence algorithms on several datasets -- without making use of any correspondence supervision or data augmentation and despite being trained exclusively on GAN-generated data. For precise correspondence, we improve upon state-of-the-art supervised methods by as much as $3\times$. We show applications of our method for augmented reality, image editing and automated pre-processing of image datasets for downstream GAN training.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.

The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.

北京阿比特科技有限公司