Human speakers can generate descriptions of perceptual concepts, abstracted from the instance-level. Moreover, such descriptions can be used by other speakers to learn provisional representations of those concepts. Learning and using abstract perceptual concepts is under-investigated in the language-and-vision field. The problem is also highly relevant to the field of representation learning in multi-modal NLP. In this paper, we introduce a framework for testing category-level perceptual grounding in multi-modal language models. In particular, we train separate neural networks to generate and interpret descriptions of visual categories. We measure the communicative success of the two models with the zero-shot classification performance of the interpretation model, which we argue is an indicator of perceptual grounding. Using this framework, we compare the performance of prototype- and exemplar-based representations. Finally, we show that communicative success exposes performance issues in the generation model, not captured by traditional intrinsic NLG evaluation metrics, and argue that these issues stem from a failure to properly ground language in vision at the category level.
Prompt recently have become an effective linguistic tool on utilizing the pre-trained language models. However, in few-shot scenarios, subtle changes of prompt's design always make the result widely different, and the prompt design is also easy to overfit the current limited samples. To alleviate this, we explore how to utilize suitable contrastive samples and multiple contrastive learning methods to realize a more robust prompt's representation. Therefore, the contrastive prompt model ConsPrompt combining with prompt encoding network, contrastive sampling modules, and contrastive scoring modules are introduced to realize differential contrastive learning. Our results exhibit the state-of-the-art performance in different few-shot settings, and the ablation experiments also certificate the effectiveness in utilizing multi-degree contrastive learning in prompt-based fine-tuning process.
As a class of fruitful approaches, diffusion probabilistic models (DPMs) have shown excellent advantages in high-resolution image reconstruction. On the other hand, masked autoencoders (MAEs), as popular self-supervised vision learners, have demonstrated simpler and more effective image reconstruction and transfer capabilities on downstream tasks. However, they all require extremely high training costs, either due to inherent high temporal-dependence (i.e., excessively long diffusion steps) or due to artificially low spatial-dependence (i.e., human-formulated high mask ratio, such as 0.75). To the end, this paper presents LMD, a faster image reconstruction framework with latent masking diffusion. First, we propose to project and reconstruct images in latent space through a pre-trained variational autoencoder, which is theoretically more efficient than in the pixel-based space. Then, we combine the advantages of MAEs and DPMs to design a progressive masking diffusion model, which gradually increases the masking proportion by three different schedulers and reconstructs the latent features from simple to difficult, without sequentially performing denoising diffusion as in DPMs or using fixed high masking ratio as in MAEs, so as to alleviate the high training time-consumption predicament. Our approach allows for learning high-capacity models and accelerate their training (by 3x or more) and barely reduces the original accuracy. Inference speed in downstream tasks also significantly outperforms the previous approaches.
Contrastive Language-Image Pre-training (CLIP), a straightforward yet effective pre-training paradigm, successfully introduces semantic-rich text supervision to vision models and has demonstrated promising results in various tasks due to its generalizability and interpretability. It has recently gained increasing interest in the medical imaging domain, either as a powerful pre-training paradigm for medical vision language alignment or a pre-trained key component for various clinical tasks. With the aim of facilitating a deeper understanding of this promising direction, this survey offers an in-depth exploration of the CLIP paradigm within the domain of medical imaging, regarding both refined CLIP pre-training and CLIP-driven applications. Our survey (1) starts with a brief introduction to the fundamentals of CLIP methodology. (2) Then, we investigate the adaptation of CLIP pre-training in the medical domain, focusing on how to optimize CLIP given characteristics of medical images and reports. (3) Furthermore, we explore the practical utilization of CLIP pre-trained models in various tasks, including classification, dense prediction, and cross-modal tasks. (4) Finally, we discuss existing limitations of CLIP in the context of medical imaging and propose forward-looking directions to address the demands of medical imaging domain. We expect that this comprehensive survey will provide researchers in the field of medical image analysis with a holistic understanding of the CLIP paradigm and its potential implications. The project page is available at //github.com/zhaozh10/Awesome-CLIP-in-Medical-Imaging, which will be regularly updated.
The utilization of discrete speech tokens, divided into semantic tokens and acoustic tokens, has been proven superior to traditional acoustic feature mel-spectrograms in terms of naturalness and robustness for text-to-speech (TTS) synthesis. Recent popular models, such as VALL-E and SPEAR-TTS, allow zero-shot speaker adaptation through auto-regressive (AR) continuation of acoustic tokens extracted from a short speech prompt. However, these AR models are restricted to generate speech only in a left-to-right direction, making them unsuitable for speech editing where both preceding and following contexts are provided. Furthermore, these models rely on acoustic tokens, which have audio quality limitations imposed by the performance of audio codec models. In this study, we propose a unified context-aware TTS framework called UniCATS, which is capable of both speech continuation and editing. UniCATS comprises two components, an acoustic model CTX-txt2vec and a vocoder CTX-vec2wav. CTX-txt2vec employs contextual VQ-diffusion to predict semantic tokens from the input text, enabling it to incorporate the semantic context and maintain seamless concatenation with the surrounding context. Following that, CTX-vec2wav utilizes contextual vocoding to convert these semantic tokens into waveforms, taking into consideration the acoustic context. Our experimental results demonstrate that CTX-vec2wav outperforms HifiGAN and AudioLM in terms of speech resynthesis from semantic tokens. Moreover, we show that UniCATS achieves state-of-the-art performance in both speech continuation and editing.
We develop a generative attention-based approach to modeling structured entities comprising different property types, such as numerical, categorical, string, and composite. This approach handles such heterogeneous data through a mixed continuous-discrete diffusion process over the properties. Our flexible framework can model entities with arbitrary hierarchical properties, enabling applications to structured Knowledge Base (KB) entities and tabular data. Our approach obtains state-of-the-art performance on a majority of cases across 15 datasets. In addition, experiments with a device KB and a nuclear physics dataset demonstrate the model's ability to learn representations useful for entity completion in diverse settings. This has many downstream use cases, including modeling numerical properties with high accuracy - critical for science applications, which also benefit from the model's inherent probabilistic nature.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.