Let F be the quotient of an analytic function with a product of linear functions. Working in the framework of analytic combinatorics in several variables, we compute asymptotic formulae for the Taylor coefficients of F using multivariate residues and saddle-point approximations. Because the singular set of F is the union of hyperplanes, we are able to make explicit the topological decompositions which arise in the multivariate singularity analysis. In addition to effective and explicit asymptotic results, we provide the first results on transitions between different asymptotic regimes, and provide the first software package to verify and compute asymptotics in non-smooth cases of analytic combinatorics in several variables. It is also our hope that this paper will serve as an entry to the more advanced corners of analytic combinatorics in several variables for combinatorialists.
We consider unconstrained optimization problems with nonsmooth and convex objective function in the form of mathematical expectation. The proposed method approximates the objective function with a sample average function by using different sample size in each iteration. The sample size is chosen in an adaptive manner based on the Inexact Restoration. The method uses line search and assumes descent directions with respect to the current approximate function. We prove the almost sure convergence under the standard assumptions. The convergence rate is also considered and the worst-case complexity of $\mathcal{O} (\varepsilon^{-2})$ is proved. Numerical results for two types of problems, machine learning hinge loss and stochastic linear complementarity problems, show the efficiency of the proposed scheme.
We construct quantum algorithms to compute the solution and/or physical observables of nonlinear ordinary differential equations (ODEs) and nonlinear Hamilton-Jacobi equations (HJE) via linear representations or exact mappings between nonlinear ODEs/HJE and linear partial differential equations (the Liouville equation and the Koopman-von Neumann equation). The connection between the linear representations and the original nonlinear system is established through the Dirac delta function or the level set mechanism. We compare the quantum linear systems algorithms based methods and the quantum simulation methods arising from different numerical approximations, including the finite difference discretisations and the Fourier spectral discretisations for the two different linear representations, with the result showing that the quantum simulation methods usually give the best performance in time complexity. We also propose the Schr\"odinger framework to solve the Liouville equation for the HJE, since it can be recast as the semiclassical limit of the Wigner transform of the Schr\"odinger equation. Comparsion between the Schr\"odinger and the Liouville framework will also be made.
In this paper we study estimating Generalized Linear Models (GLMs) in the case where the agents (individuals) are strategic or self-interested and they concern about their privacy when reporting data. Compared with the classical setting, here we aim to design mechanisms that can both incentivize most agents to truthfully report their data and preserve the privacy of individuals' reports, while their outputs should also close to the underlying parameter. In the first part of the paper, we consider the case where the covariates are sub-Gaussian and the responses are heavy-tailed where they only have the finite fourth moments. First, motivated by the stationary condition of the maximizer of the likelihood function, we derive a novel private and closed form estimator. Based on the estimator, we propose a mechanism which has the following properties via some appropriate design of the computation and payment scheme for several canonical models such as linear regression, logistic regression and Poisson regression: (1) the mechanism is $o(1)$-jointly differentially private (with probability at least $1-o(1)$); (2) it is an $o(\frac{1}{n})$-approximate Bayes Nash equilibrium for a $(1-o(1))$-fraction of agents to truthfully report their data, where $n$ is the number of agents; (3) the output could achieve an error of $o(1)$ to the underlying parameter; (4) it is individually rational for a $(1-o(1))$ fraction of agents in the mechanism ; (5) the payment budget required from the analyst to run the mechanism is $o(1)$. In the second part, we consider the linear regression model under more general setting where both covariates and responses are heavy-tailed and only have finite fourth moments. By using an $\ell_4$-norm shrinkage operator, we propose a private estimator and payment scheme which have similar properties as in the sub-Gaussian case.
This paper is concerned with the sample efficiency of reinforcement learning, assuming access to a generative model (or simulator). We first consider $\gamma$-discounted infinite-horizon Markov decision processes (MDPs) with state space $\mathcal{S}$ and action space $\mathcal{A}$. Despite a number of prior works tackling this problem, a complete picture of the trade-offs between sample complexity and statistical accuracy is yet to be determined. In particular, all prior results suffer from a severe sample size barrier, in the sense that their claimed statistical guarantees hold only when the sample size exceeds at least $\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^2}$. The current paper overcomes this barrier by certifying the minimax optimality of two algorithms -- a perturbed model-based algorithm and a conservative model-based algorithm -- as soon as the sample size exceeds the order of $\frac{|\mathcal{S}||\mathcal{A}|}{1-\gamma}$ (modulo some log factor). Moving beyond infinite-horizon MDPs, we further study time-inhomogeneous finite-horizon MDPs, and prove that a plain model-based planning algorithm suffices to achieve minimax-optimal sample complexity given any target accuracy level. To the best of our knowledge, this work delivers the first minimax-optimal guarantees that accommodate the entire range of sample sizes (beyond which finding a meaningful policy is information theoretically infeasible).
We extend three related results from the analysis of influences of Boolean functions to the quantum setting, namely the KKL Theorem, Friedgut's Junta Theorem and Talagrand's variance inequality for geometric influences. Our results are derived by a joint use of recently studied hypercontractivity and gradient estimates. These generic tools also allow us to derive generalizations of these results in a general von Neumann algebraic setting beyond the case of the quantum hypercube, including examples in infinite dimensions relevant to quantum information theory such as continuous variables quantum systems. Finally, we comment on the implications of our results as regards to noncommutative extensions of isoperimetric type inequalities and the learnability of quantum observables.
Variational Bayesian posterior inference often requires simplifying approximations such as mean-field parametrisation to ensure tractability. However, prior work has associated the variational mean-field approximation for Bayesian neural networks with underfitting in the case of small datasets or large model sizes. In this work, we show that invariances in the likelihood function of over-parametrised models contribute to this phenomenon because these invariances complicate the structure of the posterior by introducing discrete and/or continuous modes which cannot be well approximated by Gaussian mean-field distributions. In particular, we show that the mean-field approximation has an additional gap in the evidence lower bound compared to a purpose-built posterior that takes into account the known invariances. Importantly, this invariance gap is not constant; it vanishes as the approximation reverts to the prior. We proceed by first considering translation invariances in a linear model with a single data point in detail. We show that, while the true posterior can be constructed from a mean-field parametrisation, this is achieved only if the objective function takes into account the invariance gap. Then, we transfer our analysis of the linear model to neural networks. Our analysis provides a framework for future work to explore solutions to the invariance problem.
Parallel-in-time methods for partial differential equations (PDEs) have been the subject of intense development over recent decades, particularly for diffusion-dominated problems. It has been widely reported in the literature, however, that many of these methods perform quite poorly for advection-dominated problems. Here we analyze the particular iterative parallel-in-time algorithm of multigrid reduction-in-time (MGRIT) for discretizations of constant-wave-speed linear advection problems. We focus on common method-of-lines discretizations that employ upwind finite differences in space and Runge-Kutta methods in time. Using a convergence framework we developed in previous work, we prove for a subclass of these discretizations that, if using the standard approach of rediscretizing the fine-grid problem on the coarse grid, robust MGRIT convergence with respect to CFL number and coarsening factor is not possible. This poor convergence and non-robustness is caused, at least in part, by an inadequate coarse-grid correction for smooth Fourier modes known as characteristic components.We propose an alternative coarse-grid that provides a better correction of these modes. This coarse-grid operator is related to previous work and uses a semi-Lagrangian discretization combined with an implicitly treated truncation error correction. Theory and numerical experiments show the coarse-grid operator yields fast MGRIT convergence for many of the method-of-lines discretizations considered, including for both implicit and explicit discretizations of high order.
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.
Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.