亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In an instance of the minimum eigenvalue problem, we are given a collection of $n$ vectors $v_1,\ldots, v_n \subset {\mathbb{R}^d}$, and the goal is to pick a subset $B\subseteq [n]$ of given vectors to maximize the minimum eigenvalue of the matrix $\sum_{i\in B} v_i v_i^{\top} $. Often, additional combinatorial constraints such as cardinality constraint $\left(|B|\leq k\right)$ or matroid constraint ($B$ is a basis of a matroid defined on $[n]$) must be satisfied by the chosen set of vectors. The minimum eigenvalue problem with matroid constraints models a wide variety of problems including the Santa Clause problem, the E-design problem, and the constructive Kadison-Singer problem. In this paper, we give a randomized algorithm that finds a set $B\subseteq [n]$ subject to any matroid constraint whose minimum eigenvalue is at least $(1-\epsilon)$ times the optimum, with high probability. The running time of the algorithm is $O\left( n^{O(d\log(d)/\epsilon^2)}\right)$. In particular, our results give a polynomial time asymptotic scheme when the dimension of the vectors is constant. Our algorithm uses a convex programming relaxation of the problem after guessing a rescaling which allows us to apply pipage rounding and matrix Chernoff inequalities to round to a good solution. The key new component is a structural lemma which enables us to "guess'' the appropriate rescaling, which could be of independent interest. Our approach generalizes the approximation guarantee to monotone, homogeneous functions and as such we can maximize $\det(\sum_{i\in B} v_i v_i^\top)^{1/d}$, or minimize any norm of the eigenvalues of the matrix $\left(\sum_{i\in B} v_i v_i^\top\right)^{-1} $, with the same running time under some mild assumptions. As a byproduct, we also get a simple algorithm for an algorithmic version of Kadison-Singer problem.

相關內容

Let $\mathcal{P}$ be a simple polygon with $m$ vertices and let $P$ be a set of $n$ points inside $\mathcal{P}$. We prove that there exists, for any $\varepsilon>0$, a set $\mathcal{C} \subset P$ of size $O(1/\varepsilon^2)$ such that the following holds: for any query point $q$ inside the polygon $\mathcal{P}$, the geodesic distance from $q$ to its furthest neighbor in $\mathcal{C}$ is at least $1-\varepsilon$ times the geodesic distance to its further neighbor in $P$. Thus the set $\mathcal{C}$ can be used for answering $\varepsilon$-approximate furthest-neighbor queries with a data structure whose storage requirement is independent of the size of $P$. The coreset can be constructed in $O\left(\frac{1}{\varepsilon} \left( n\log(1/\varepsilon) + (n+m)\log(n+m)\right) \right)$ time.

In 1991, Brenier proved a theorem that generalizes the $QR$ decomposition for square matrices -- factored as PSD $\times$ unitary -- to any vector field $F:\mathbb{R}^d\rightarrow \mathbb{R}^d$. The theorem, known as the polar factorization theorem, states that any field $F$ can be recovered as the composition of the gradient of a convex function $u$ with a measure-preserving map $M$, namely $F=\nabla u \circ M$. We propose a practical implementation of this far-reaching theoretical result, and explore possible uses within machine learning. The theorem is closely related to optimal transport (OT) theory, and we borrow from recent advances in the field of neural optimal transport to parameterize the potential $u$ as an input convex neural network. The map $M$ can be either evaluated pointwise using $u^*$, the convex conjugate of $u$, through the identity $M=\nabla u^* \circ F$, or learned as an auxiliary network. Because $M$ is, in general, not injective, we consider the additional task of estimating the ill-posed inverse map that can approximate the pre-image measure $M^{-1}$ using a stochastic generator. We illustrate possible applications of \citeauthor{Brenier1991PolarFA}'s polar factorization to non-convex optimization problems, as well as sampling of densities that are not log-concave.

The $(k, z)$-Clustering problem in Euclidean space $\mathbb{R}^d$ has been extensively studied. Given the scale of data involved, compression methods for the Euclidean $(k, z)$-Clustering problem, such as data compression and dimension reduction, have received significant attention in the literature. However, the space complexity of the clustering problem, specifically, the number of bits required to compress the cost function within a multiplicative error $\varepsilon$, remains unclear in existing literature. This paper initiates the study of space complexity for Euclidean $(k, z)$-Clustering and offers both upper and lower bounds. Our space bounds are nearly tight when $k$ is constant, indicating that storing a coreset, a well-known data compression approach, serves as the optimal compression scheme. Furthermore, our lower bound result for $(k, z)$-Clustering establishes a tight space bound of $\Theta( n d )$ for terminal embedding, where $n$ represents the dataset size. Our technical approach leverages new geometric insights for principal angles and discrepancy methods, which may hold independent interest.

An \emph{eight-partition} of a finite set of points (respectively, of a continuous mass distribution) in $\mathbb{R}^3$ consists of three planes that divide the space into $8$ octants, such that each open octant contains at most $1/8$ of the points (respectively, of the mass). In 1966, Hadwiger showed that any mass distribution in $\mathbb{R}^3$ admits an eight-partition; moreover, one can prescribe the normal direction of one of the three planes. The analogous result for finite point sets follows by a standard limit argument. We prove the following variant of this result: Any mass distribution (or point set) in $\mathbb{R}^3$ admits an eight-partition for which the intersection of two of the planes is a line with a prescribed direction. Moreover, we present an efficient algorithm for calculating an eight-partition of a set of $n$ points in~$\mathbb{R}^3$ (with prescribed normal direction of one of the planes) in time $O^{*}(n^{5/2})$.

We study the complexity of approximating the number of answers to a small query $\varphi$ in a large database $\mathcal{D}$. We establish an exhaustive classification into tractable and intractable cases if $\varphi$ is a conjunctive query with disequalities and negations: $\bullet$ If there is a constant bound on the arity of $\varphi$, and if the randomised Exponential Time Hypothesis (rETH) holds, then the problem has a fixed-parameter tractable approximation scheme (FPTRAS) if and only if the treewidth of $\varphi$ is bounded. $\bullet$ If the arity is unbounded and we allow disequalities only, then the problem has an FPTRAS if and only if the adaptive width of $\varphi$ (a width measure strictly more general than treewidth) is bounded; the lower bound relies on the rETH as well. Additionally we show that our results cannot be strengthened to achieve a fully polynomial randomised approximation scheme (FPRAS): We observe that, unless $\mathrm{NP} =\mathrm{RP}$, there is no FPRAS even if the treewidth (and the adaptive width) is $1$. However, if there are neither disequalities nor negations, we prove the existence of an FPRAS for queries of bounded fractional hypertreewidth, strictly generalising the recently established FPRAS for conjunctive queries with bounded hypertreewidth due to Arenas, Croquevielle, Jayaram and Riveros (STOC 2021).

The stochastic block model (SBM) is a generalization of the Erd\H{o}s--R\'enyi model of random graphs that describes the interaction of a finite number of distinct communities. In sparse Erd\H{o}s--R\'enyi graphs, it is known that a linear-time algorithm of Karp and Sipser achieves near-optimal matching sizes asymptotically almost surely, giving a law-of-large numbers for the matching sizes of such graphs in terms of solutions to an ODE. We provide an extension of this analysis, identifying broad ranges of stochastic block model parameters for which the Karp--Sipser algorithm achieves near-optimal matching sizes, but demonstrating that it cannot perform optimally on general SBM instances. We also consider the problem of constructing a matching online, in which the vertices of one half of a bipartite stochastic block model arrive one-at-a-time, and must be matched as they arrive. We show that the competitive ratio lower bound of 0.837 found by Mastin and Jaillet for the Erd\H{o}s--R\'enyi case is tight whenever the expected degrees in all communities are equal. We propose several linear-time algorithms for online matching in the general stochastic block model, but prove that despite very good experimental performance, none of these achieve online asymptotic optimality.

In this paper we study the problem of maximizing the distance to a given point $C_0$ over a polytope $\mathcal{P}$. Assuming that the polytope is circumscribed by a known ball we construct an intersection of balls which preserves the vertices of the polytope on the boundary of this ball, and show that the intersection of balls approximates the polytope arbitrarily well. Then, we use some known results regarding the maximization of distances to a given point over an intersection of balls to create a new polytope which preserves the maximizers to the original problem. Next, a new intersection of balls is obtained in a similar fashion, and as such, after a finite number of iterations, we conjecture, we end up with an intersection of balls over which we can maximize the distance to the given point. The obtained distance is shown to be a non trivial upper bound to the original distance. Tests are made with maximizing the distance to a random point over the unit hypercube up to dimension $n = 100$. Several detailed 2-d examples are also shown.

We design a deterministic subexponential time algorithm that takes as input a multivariate polynomial $f$ computed by a constant-depth circuit over rational numbers, and outputs a list $L$ of circuits (of unbounded depth and possibly with division gates) that contains all irreducible factors of $f$ computable by constant-depth circuits. This list $L$ might also include circuits that are spurious: they either do not correspond to factors of $f$ or are not even well-defined, e.g. the input to a division gate is a sub-circuit that computes the identically zero polynomial. The key technical ingredient of our algorithm is a notion of the pseudo-resultant of $f$ and a factor $g$, which serves as a proxy for the resultant of $g$ and $f/g$, with the advantage that the circuit complexity of the pseudo-resultant is comparable to that of the circuit complexity of $f$ and $g$. This notion, which might be of independent interest, together with the recent results of Limaye, Srinivasan and Tavenas, helps us derandomize one key step of multivariate polynomial factorization algorithms - that of deterministically finding a good starting point for Newton Iteration for the case when the input polynomial as well as the irreducible factor of interest have small constant-depth circuits.

It is a longstanding conjecture that every simple drawing of a complete graph on $n \geq 3$ vertices contains a crossing-free Hamiltonian cycle. We strengthen this conjecture to "there exists a crossing-free Hamiltonian path between each pair of vertices" and show that this stronger conjecture holds for several classes of simple drawings, including strongly c-monotone drawings and cylindrical drawings. As a second main contribution, we give an overview on different classes of simple drawings and investigate inclusion relations between them up to weak isomorphism.

For positive integers $d$ and $p$ such that $d \ge p$, we obtain complete asymptotic expansions, for large $d$, of the normalizing constants for the matrix Bingham and matrix Langevin distributions on Stiefel manifolds. The accuracy of each truncated expansion is strictly increasing in $d$; also, for sufficiently large $d$, the accuracy is strictly increasing in $m$, the number of terms in the truncated expansion. We apply these results to obtain the rate of convergence of these asymptotic expansions if both $d, p \to \infty$. Using values of $d$ and $p$ arising in various data sets, we illustrate the rate of convergence of the truncated approximations as $d$ or $m$ increases. These results extend our recent work on asymptotic expansions for the normalizing constants of the high-dimensional Bingham distributions.

北京阿比特科技有限公司