The $(k, z)$-Clustering problem in Euclidean space $\mathbb{R}^d$ has been extensively studied. Given the scale of data involved, compression methods for the Euclidean $(k, z)$-Clustering problem, such as data compression and dimension reduction, have received significant attention in the literature. However, the space complexity of the clustering problem, specifically, the number of bits required to compress the cost function within a multiplicative error $\varepsilon$, remains unclear in existing literature. This paper initiates the study of space complexity for Euclidean $(k, z)$-Clustering and offers both upper and lower bounds. Our space bounds are nearly tight when $k$ is constant, indicating that storing a coreset, a well-known data compression approach, serves as the optimal compression scheme. Furthermore, our lower bound result for $(k, z)$-Clustering establishes a tight space bound of $\Theta( n d )$ for terminal embedding, where $n$ represents the dataset size. Our technical approach leverages new geometric insights for principal angles and discrepancy methods, which may hold independent interest.
We compare the $(1,\lambda)$-EA and the $(1 + \lambda)$-EA on the recently introduced benchmark DisOM, which is the OneMax function with randomly planted local optima. Previous work showed that if all local optima have the same relative height, then the plus strategy never loses more than a factor $O(n\log n)$ compared to the comma strategy. Here we show that even small random fluctuations in the heights of the local optima have a devastating effect for the plus strategy and lead to super-polynomial runtimes. On the other hand, due to their ability to escape local optima, comma strategies are unaffected by the height of the local optima and remain efficient. Our results hold for a broad class of possible distortions and show that the plus strategy, but not the comma strategy, is generally deceived by sparse unstructured fluctuations of a smooth landscape.
We consider the constrained sampling problem where the goal is to sample from a target distribution $\pi(x)\propto e^{-f(x)}$ when $x$ is constrained to lie on a convex body $\mathcal{C}$. Motivated by penalty methods from continuous optimization, we propose penalized Langevin Dynamics (PLD) and penalized underdamped Langevin Monte Carlo (PULMC) methods that convert the constrained sampling problem into an unconstrained sampling problem by introducing a penalty function for constraint violations. When $f$ is smooth and gradients are available, we get $\tilde{\mathcal{O}}(d/\varepsilon^{10})$ iteration complexity for PLD to sample the target up to an $\varepsilon$-error where the error is measured in the TV distance and $\tilde{\mathcal{O}}(\cdot)$ hides logarithmic factors. For PULMC, we improve the result to $\tilde{\mathcal{O}}(\sqrt{d}/\varepsilon^{7})$ when the Hessian of $f$ is Lipschitz and the boundary of $\mathcal{C}$ is sufficiently smooth. To our knowledge, these are the first convergence results for underdamped Langevin Monte Carlo methods in the constrained sampling that handle non-convex $f$ and provide guarantees with the best dimension dependency among existing methods with deterministic gradient. If unbiased stochastic estimates of the gradient of $f$ are available, we propose PSGLD and PSGULMC methods that can handle stochastic gradients and are scaleable to large datasets without requiring Metropolis-Hasting correction steps. For PSGLD and PSGULMC, when $f$ is strongly convex and smooth, we obtain $\tilde{\mathcal{O}}(d/\varepsilon^{18})$ and $\tilde{\mathcal{O}}(d\sqrt{d}/\varepsilon^{39})$ iteration complexity in W2 distance. When $f$ is smooth and can be non-convex, we provide finite-time performance bounds and iteration complexity results. Finally, we illustrate the performance on Bayesian LASSO regression and Bayesian constrained deep learning problems.
We present a structure-preserving Eulerian algorithm for solving $L^2$-gradient flows and a structure-preserving Lagrangian algorithm for solving generalized diffusions. Both algorithms employ neural networks as tools for spatial discretization. Unlike most existing methods that construct numerical discretizations based on the strong or weak form of the underlying PDE, the proposed schemes are constructed based on the energy-dissipation law directly. This guarantees the monotonic decay of the system's free energy, which avoids unphysical states of solutions and is crucial for the long-term stability of numerical computations. To address challenges arising from nonlinear neural network discretization, we perform temporal discretizations on these variational systems before spatial discretizations. This approach is computationally memory-efficient when implementing neural network-based algorithms. The proposed neural network-based schemes are mesh-free, allowing us to solve gradient flows in high dimensions. Various numerical experiments are presented to demonstrate the accuracy and energy stability of the proposed numerical schemes.
Sorting has a natural generalization where the input consists of: (1) a ground set $X$ of size $n$, (2) a partial oracle $O_P$ specifying some fixed partial order $P$ on $X$ and (3) a linear oracle $O_L$ specifying a linear order $L$ that extends $P$. The goal is to recover the linear order $L$ on $X$ using the fewest number of linear oracle queries. In this problem, we measure algorithmic complexity through three metrics: oracle queries to $O_L$, oracle queries to $O_P$, and the time spent. Any algorithm requires worst-case $\log_2 e(P)$ linear oracle queries to recover the linear order on $X$. Kahn and Saks presented the first algorithm that uses $\Theta(\log e(P))$ linear oracle queries (using $O(n^2)$ partial oracle queries and exponential time). The state-of-the-art for the general problem is by Cardinal, Fiorini, Joret, Jungers and Munro who at STOC'10 manage to separate the linear and partial oracle queries into a preprocessing and query phase. They can preprocess $P$ using $O(n^2)$ partial oracle queries and $O(n^{2.5})$ time. Then, given $O_L$, they uncover the linear order on $X$ in $\Theta(\log e(P))$ linear oracle queries and $O(n + \log e(P))$ time -- which is worst-case optimal in the number of linear oracle queries but not in the time spent. For $c \geq 1$, our algorithm can preprocess $O_P$ using $O(n^{1 + \frac{1}{c}})$ queries and time. Given $O_L$, we uncover $L$ using $\Theta(c \log e(P))$ queries and time. We show a matching lower bound, as there exist positive constants $(\alpha, \beta)$ where for any constant $c \geq 1$, any algorithm that uses at most $\alpha \cdot n^{1 + \frac{1}{c}}$ preprocessing must use worst-case at least $\beta \cdot c \log e(P)$ linear oracle queries. Thus, we solve the problem of sorting under partial information through an algorithm that is asymptotically tight across all three metrics.
We consider the maximization of a submodular objective function $f:2^U\to\mathbb{R}_{\geq 0}$, where the objective $f$ is not accessed as a value oracle but instead subject to noisy queries. We introduce a versatile adaptive sampling procedure called which determines whether the marginal gain of the function $f$ is approximately above or below an input threshold with high probability in as few noisy samples as possible. Using the sampling procedure as a subroutine, we propose sample efficient algorithms for monotone submodular maximization with cardinality and matroid constraints, as well as unconstrained non-monotone submodular maximization. The proposed algorithms achieve approximation guarantees arbitrarily close to those of the standard value oracle setting. We further provide an experimental evaluation on real instances of submodular maximization and demonstrate the sample efficiency of our proposed algorithm relative to alternative approaches.
Let $\Omega = [0,1]^d$ be the unit cube in $\mathbb{R}^d$. We study the problem of how efficiently, in terms of the number of parameters, deep neural networks with the ReLU activation function can approximate functions in the Sobolev spaces $W^s(L_q(\Omega))$ and Besov spaces $B^s_r(L_q(\Omega))$, with error measured in the $L_p(\Omega)$ norm. This problem is important when studying the application of neural networks in a variety of fields, including scientific computing and signal processing, and has previously been solved only when $p=q=\infty$. Our contribution is to provide a complete solution for all $1\leq p,q\leq \infty$ and $s > 0$ for which the corresponding Sobolev or Besov space compactly embeds into $L_p$. The key technical tool is a novel bit-extraction technique which gives an optimal encoding of sparse vectors. This enables us to obtain sharp upper bounds in the non-linear regime where $p > q$. We also provide a novel method for deriving $L_p$-approximation lower bounds based upon VC-dimension when $p < \infty$. Our results show that very deep ReLU networks significantly outperform classical methods of approximation in terms of the number of parameters, but that this comes at the cost of parameters which are not encodable.
We investigate the rationality of Weil sums of binomials of the form $W^{K,s}_u=\sum_{x \in K} \psi(x^s - u x)$, where $K$ is a finite field whose canonical additive character is $\psi$, and where $u$ is an element of $K^{\times}$ and $s$ is a positive integer relatively prime to $|K^\times|$, so that $x \mapsto x^s$ is a permutation of $K$. The Weil spectrum for $K$ and $s$, which is the family of values $W^{K,s}_u$ as $u$ runs through $K^\times$, is of interest in arithmetic geometry and in several information-theoretic applications. The Weil spectrum always contains at least three distinct values if $s$ is nondegenerate (i.e., if $s$ is not a power of $p$ modulo $|K^\times|$, where $p$ is the characteristic of $K$). It is already known that if the Weil spectrum contains precisely three distinct values, then they must all be rational integers. We show that if the Weil spectrum contains precisely four distinct values, then they must all be rational integers, with the sole exception of the case where $|K|=5$ and $s \equiv 3 \pmod{4}$.
For a $P$-indexed persistence module ${\sf M}$, the (generalized) rank of ${\sf M}$ is defined as the rank of the limit-to-colimit map for the diagram of vector spaces of ${\sf M}$ over the poset $P$. For $2$-parameter persistence modules, recently a zigzag persistence based algorithm has been proposed that takes advantage of the fact that generalized rank for $2$-parameter modules is equal to the number of full intervals in a zigzag module defined on the boundary of the poset. Analogous definition of boundary for $d$-parameter persistence modules or general $P$-indexed persistence modules does not seem plausible. To overcome this difficulty, we first unfold a given $P$-indexed module ${\sf M}$ into a zigzag module ${\sf M}_{ZZ}$ and then check how many full interval modules in a decomposition of ${\sf M}_{ZZ}$ can be folded back to remain full in a decomposition of ${\sf M}$. This number determines the generalized rank of ${\sf M}$. For special cases of degree-$d$ homology for $d$-complexes, we obtain a more efficient algorithm including a linear time algorithm for degree-$1$ homology in graphs.
We show that $L^2$-accurate score estimation, in the absence of strong assumptions on the data distribution, is computationally hard even when sample complexity is polynomial in the relevant problem parameters. Our reduction builds on the result of Chen et al. (ICLR 2023), who showed that the problem of generating samples from an unknown data distribution reduces to $L^2$-accurate score estimation. Our hard-to-estimate distributions are the "Gaussian pancakes" distributions, originally due to Diakonikolas et al. (FOCS 2017), which have been shown to be computationally indistinguishable from the standard Gaussian under widely believed hardness assumptions from lattice-based cryptography (Bruna et al., STOC 2021; Gupte et al., FOCS 2022).
We consider the task of locally correcting, and locally list-correcting, multivariate linear functions over the domain $\{0,1\}^n$ over arbitrary fields and more generally Abelian groups. Such functions form error-correcting codes of relative distance $1/2$ and we give local-correction algorithms correcting up to nearly $1/4$-fraction errors making $\widetilde{\mathcal{O}}(\log n)$ queries. This query complexity is optimal up to $\mathrm{poly}(\log\log n)$ factors. We also give local list-correcting algorithms correcting $(1/2 - \varepsilon)$-fraction errors with $\widetilde{\mathcal{O}}_{\varepsilon}(\log n)$ queries. These results may be viewed as natural generalizations of the classical work of Goldreich and Levin whose work addresses the special case where the underlying group is $\mathbb{Z}_2$. By extending to the case where the underlying group is, say, the reals, we give the first non-trivial locally correctable codes (LCCs) over the reals (with query complexity being sublinear in the dimension (also known as message length)). The central challenge in constructing the local corrector is constructing ``nearly balanced vectors'' over $\{-1,1\}^n$ that span $1^n$ -- we show how to construct $\mathcal{O}(\log n)$ vectors that do so, with entries in each vector summing to $\pm1$. The challenge to the local-list-correction algorithms, given the local corrector, is principally combinatorial, i.e., in proving that the number of linear functions within any Hamming ball of radius $(1/2-\varepsilon)$ is $\mathcal{O}_{\varepsilon}(1)$. Getting this general result covering every Abelian group requires integrating a variety of known methods with some new combinatorial ingredients analyzing the structural properties of codewords that lie within small Hamming balls.