亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We compare the $(1,\lambda)$-EA and the $(1 + \lambda)$-EA on the recently introduced benchmark DisOM, which is the OneMax function with randomly planted local optima. Previous work showed that if all local optima have the same relative height, then the plus strategy never loses more than a factor $O(n\log n)$ compared to the comma strategy. Here we show that even small random fluctuations in the heights of the local optima have a devastating effect for the plus strategy and lead to super-polynomial runtimes. On the other hand, due to their ability to escape local optima, comma strategies are unaffected by the height of the local optima and remain efficient. Our results hold for a broad class of possible distortions and show that the plus strategy, but not the comma strategy, is generally deceived by sparse unstructured fluctuations of a smooth landscape.

相關內容

We investigate the decidability of the monadic second-order (MSO) theory of the structure $\langle \mathbb{N};<,P_1, \ldots,P_k \rangle$, for various unary predicates $P_1,\ldots,P_k \subseteq \mathbb{N}$. We focus in particular on "arithmetic" predicates arising in the study of linear recurrence sequences, such as fixed-base powers $\mathsf{Pow}_k = \{k^n : n \in \mathbb{N}\}$, $k$-th powers $\mathsf{N}_k = \{n^k : n \in \mathbb{N}\}$, and the set of terms of the Fibonacci sequence $\mathsf{Fib} = \{0,1,2,3,5,8,13,\ldots\}$ (and similarly for other linear recurrence sequences having a single, non-repeated, dominant characteristic root). We obtain several new unconditional and conditional decidability results, a select sample of which are the following: $\bullet$ The MSO theory of $\langle \mathbb{N};<,\mathsf{Pow}_2, \mathsf{Fib} \rangle$ is decidable; $\bullet$ The MSO theory of $\langle \mathbb{N};<, \mathsf{Pow}_2, \mathsf{Pow}_3, \mathsf{Pow}_6 \rangle$ is decidable; $\bullet$ The MSO theory of $\langle \mathbb{N};<, \mathsf{Pow}_2, \mathsf{Pow}_3, \mathsf{Pow}_5 \rangle$ is decidable assuming Schanuel's conjecture; $\bullet$ The MSO theory of $\langle \mathbb{N};<, \mathsf{Pow}_4, \mathsf{N}_2 \rangle$ is decidable; $\bullet$ The MSO theory of $\langle \mathbb{N};<, \mathsf{Pow}_2, \mathsf{N}_2 \rangle$ is Turing-equivalent to the MSO theory of $\langle \mathbb{N};<,S \rangle$, where $S$ is the predicate corresponding to the binary expansion of $\sqrt{2}$. (As the binary expansion of $\sqrt{2}$ is widely believed to be normal, the corresponding MSO theory is in turn expected to be decidable.) These results are obtained by exploiting and combining techniques from dynamical systems, number theory, and automata theory.

In Linear Hashing ($\mathsf{LH}$) with $\beta$ bins on a size $u$ universe ${\mathcal{U}=\{0,1,\ldots, u-1\}}$, items $\{x_1,x_2,\ldots, x_n\}\subset \mathcal{U}$ are placed in bins by the hash function $$x_i\mapsto (ax_i+b)\mod p \mod \beta$$ for some prime $p\in [u,2u]$ and randomly chosen integers $a,b \in [1,p]$. The "maxload" of $\mathsf{LH}$ is the number of items assigned to the fullest bin. Expected maxload for a worst-case set of items is a natural measure of how well $\mathsf{LH}$ distributes items amongst the bins. Fix $\beta=n$. Despite $\mathsf{LH}$'s simplicity, bounding $\mathsf{LH}$'s worst-case maxload is extremely challenging. It is well-known that on random inputs $\mathsf{LH}$ achieves maxload $\Omega\left(\frac{\log n}{\log\log n}\right)$; this is currently the best lower bound for $\mathsf{LH}$'s expected maxload. Recently Knudsen established an upper bound of $\widetilde{O}(n^{1 / 3})$. The question "Is the worst-case expected maxload of $\mathsf{LH}$ $n^{o(1)}$?" is one of the most basic open problems in discrete math. In this paper we propose a set of intermediate open questions to help researchers make progress on this problem. We establish the relationship between these intermediate open questions and make some partial progress on them.

This paper outlines a methodology for constructing a geometrically smooth interpolatory curve in $\mathbb{R}^d$ applicable to oriented and flattenable points with $d\ge 2$. The construction involves four essential components: local functions, blending functions, redistributing functions, and gluing functions. The resulting curve possesses favorable attributes, including $G^2$ geometric smoothness, locality, the absence of cusps, and no self-intersection. Moreover, the algorithm is adaptable to various scenarios, such as preserving convexity, interpolating sharp corners, and ensuring sphere preservation. The paper substantiates the efficacy of the proposed method through the presentation of numerous numerical examples, offering a practical demonstration of its capabilities.

The classical theory of Kosambi-Cartan-Chern (KCC) developed in differential geometry provides a powerful method for analyzing the behaviors of dynamical systems. In the KCC theory, the properties of a dynamical system are described in terms of five geometrical invariants, of which the second corresponds to the so-called Jacobi stability of the system. Different from that of the Lyapunov stability that has been studied extensively in the literature, the analysis of the Jacobi stability has been investigated more recently using geometrical concepts and tools. It turns out that the existing work on the Jacobi stability analysis remains theoretical and the problem of algorithmic and symbolic treatment of Jacobi stability analysis has yet to be addressed. In this paper, we initiate our study on the problem for a class of ODE systems of arbitrary dimension and propose two algorithmic schemes using symbolic computation to check whether a nonlinear dynamical system may exhibit Jacobi stability. The first scheme, based on the construction of the complex root structure of a characteristic polynomial and on the method of quantifier elimination, is capable of detecting the existence of the Jacobi stability of the given dynamical system. The second algorithmic scheme exploits the method of semi-algebraic system solving and allows one to determine conditions on the parameters for a given dynamical system to have a prescribed number of Jacobi stable fixed points. Several examples are presented to demonstrate the effectiveness of the proposed algorithmic schemes.

We study active learning methods for single index models of the form $F({\mathbf x}) = f(\langle {\mathbf w}, {\mathbf x}\rangle)$, where $f:\mathbb{R} \to \mathbb{R}$ and ${\mathbf x,\mathbf w} \in \mathbb{R}^d$. In addition to their theoretical interest as simple examples of non-linear neural networks, single index models have received significant recent attention due to applications in scientific machine learning like surrogate modeling for partial differential equations (PDEs). Such applications require sample-efficient active learning methods that are robust to adversarial noise. I.e., that work even in the challenging agnostic learning setting. We provide two main results on agnostic active learning of single index models. First, when $f$ is known and Lipschitz, we show that $\tilde{O}(d)$ samples collected via {statistical leverage score sampling} are sufficient to learn a near-optimal single index model. Leverage score sampling is simple to implement, efficient, and already widely used for actively learning linear models. Our result requires no assumptions on the data distribution, is optimal up to log factors, and improves quadratically on a recent ${O}(d^{2})$ bound of \cite{gajjar2023active}. Second, we show that $\tilde{O}(d)$ samples suffice even in the more difficult setting when $f$ is \emph{unknown}. Our results leverage tools from high dimensional probability, including Dudley's inequality and dual Sudakov minoration, as well as a novel, distribution-aware discretization of the class of Lipschitz functions.

We propose a volumetric formulation for computing the Optimal Transport problem defined on surfaces in $\mathbb{R}^3$, found in disciplines like optics, computer graphics, and computational methodologies. Instead of directly tackling the original problem on the surface, we define a new Optimal Transport problem on a thin tubular region, $T_{\epsilon}$, adjacent to the surface. This extension offers enhanced flexibility and simplicity for numerical discretization on Cartesian grids. The Optimal Transport mapping and potential function computed on $T_{\epsilon}$ are consistent with the original problem on surfaces. We demonstrate that, with the proposed volumetric approach, it is possible to use simple and straightforward numerical methods to solve Optimal Transport for $\Gamma = \mathbb{S}^2$ and the $2$-torus.

We consider the construction of maximal families of polynomials over the finite field $\mathbb{F}_q$, all having the same degree $n$ and a nonzero constant term, where the degree of the GCD of any two polynomials is $d$ with $1 \le d\le n$. The motivation for this problem lies in a recent construction for subspace codes based on cellular automata. More precisely, the minimum distance of such subspace codes relates to the maximum degree $d$ of the pairwise GCD in this family of polynomials. Hence, characterizing the maximal families of such polynomials is equivalent to determining the maximum cardinality of the corresponding subspace codes for a given minimum distance. We first show a lower bound on the cardinality of such families, and then focus on the specific case where $d=1$. There, we characterize the maximal families of polynomials over the binary field $\mathbb{F}_2$. Our findings prompt several more open questions, which we plan to address in an extended version of this work.

The Learning With Errors ($\mathsf{LWE}$) problem asks to find $\mathbf{s}$ from an input of the form $(\mathbf{A}, \mathbf{b} = \mathbf{A}\mathbf{s}+\mathbf{e}) \in (\mathbb{Z}/q\mathbb{Z})^{m \times n} \times (\mathbb{Z}/q\mathbb{Z})^{m}$, for a vector $\mathbf{e}$ that has small-magnitude entries. In this work, we do not focus on solving $\mathsf{LWE}$ but on the task of sampling instances. As these are extremely sparse in their range, it may seem plausible that the only way to proceed is to first create $\mathbf{s}$ and $\mathbf{e}$ and then set $\mathbf{b} = \mathbf{A}\mathbf{s}+\mathbf{e}$. In particular, such an instance sampler knows the solution. This raises the question whether it is possible to obliviously sample $(\mathbf{A}, \mathbf{A}\mathbf{s}+\mathbf{e})$, namely, without knowing the underlying $\mathbf{s}$. A variant of the assumption that oblivious $\mathsf{LWE}$ sampling is hard has been used in a series of works to analyze the security of candidate constructions of Succinct Non interactive Arguments of Knowledge (SNARKs). As the assumption is related to $\mathsf{LWE}$, these SNARKs have been conjectured to be secure in the presence of quantum adversaries. Our main result is a quantum polynomial-time algorithm that samples well-distributed $\mathsf{LWE}$ instances while provably not knowing the solution, under the assumption that $\mathsf{LWE}$ is hard. Moreover, the approach works for a vast range of $\mathsf{LWE}$ parametrizations, including those used in the above-mentioned SNARKs. This invalidates the assumptions used in their security analyses, although it does not yield attacks against the constructions themselves.

The Sibson and Arimoto capacity, which are based on the Sibson and Arimoto mutual information (MI) of order {\alpha}, respectively, are well-known generalizations of the channel capacity C. In this study, we derive novel alternating optimization algorithms for computing these capacities by providing new variational characterizations of the Sibson and Arimoto MI. Moreover, we prove that all iterative algorithms for computing these capacities are equivalent under appropriate conditions imposed on their initial distributions.

Airplane refueling problem is a nonlinear unconstrained optimization problem with $n!$ feasible solutions. Given a fleet of $n$ airplanes with mid-air refueling technique, the question is to find the best refueling policy to make the last remaining airplane travels the farthest. In order to deal with the large scale of airplanes refueling instances, we proposed the definition of sequential feasible solution by employing the refueling properties of data structure. We proved that if an airplanes refueling instance has feasible solutions, it must have the sequential feasible solutions; and the optimal feasible solution must be the optimal sequential feasible solution. Then we proposed the sequential search algorithm which consists of two steps. The first step of the sequential search algorithm aims to seek out all of the sequential feasible solutions. When the input size of $n$ is greater than an index number, we proved that the number of the sequential feasible solutions will change to grow at a polynomial rate. The second step of the sequential search algorithm aims to search for the maximal sequential feasible solution by bubble sorting all of the sequential feasible solutions. Moreover, we built an efficient computability scheme, according to which we could forecast within a polynomial time the computational complexity of the sequential search algorithm that runs on any given airplanes refueling instance. Thus we could provide a computational strategy for decision makers or algorithm users by considering with their available computing resources.

北京阿比特科技有限公司