亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the construction of maximal families of polynomials over the finite field $\mathbb{F}_q$, all having the same degree $n$ and a nonzero constant term, where the degree of the GCD of any two polynomials is $d$ with $1 \le d\le n$. The motivation for this problem lies in a recent construction for subspace codes based on cellular automata. More precisely, the minimum distance of such subspace codes relates to the maximum degree $d$ of the pairwise GCD in this family of polynomials. Hence, characterizing the maximal families of such polynomials is equivalent to determining the maximum cardinality of the corresponding subspace codes for a given minimum distance. We first show a lower bound on the cardinality of such families, and then focus on the specific case where $d=1$. There, we characterize the maximal families of polynomials over the binary field $\mathbb{F}_2$. Our findings prompt several more open questions, which we plan to address in an extended version of this work.

相關內容

Generally, discretization of partial differential equations (PDEs) creates a sequence of linear systems $A_k x_k = b_k, k = 0, 1, 2, ..., N$ with well-known and structured sparsity patterns. Preconditioners are often necessary to achieve fast convergence When solving these linear systems using iterative solvers. We can use preconditioner updates for closely related systems instead of computing a preconditioner for each system from scratch. One such preconditioner update is the sparse approximate map (SAM), which is based on the sparse approximate inverse preconditioner using a least squares approximation. A SAM then acts as a map from one matrix in the sequence to another nearby one for which we have an effective preconditioner. To efficiently compute an effective SAM update (i.e., one that facilitates fast convergence of the iterative solver), we seek to compute an optimal sparsity pattern. In this paper, we examine several sparsity patterns for computing the SAM update to characterize optimal or near-optimal sparsity patterns for linear systems arising from discretized PDEs.

Due to M\"{u}ller's theorem, the Kolmogorov complexity of a string was shown to be equal to its quantum Kolmogorov complexity. Thus there are no benefits to using quantum mechanics to compress classical information. The quantitative amount of information in classical sources is invariant to the physical model used. These consequences make this theorem arguably the most important result in the intersection of algorithmic information theory and physics. The original proof is quite extensive. This paper contains two simple proofs of this theorem. This paper also contains new bounds for quantum Kolmogorov complexity with error.

Graph matrices are a type of matrix which has played a crucial role in analyzing the sum of squares hierarchy on average case problems. However, except for rough norm bounds, little is known about graph matrices. In this paper, we take a step towards better understanding graph matrices by determining the limiting distribution of the spectrum of the singular values of Z-shaped graph matrices. We then give a partial generalization of our results for $m$-layer Z-shaped graph matrices.

We consider learning in an adversarial environment, where an $\varepsilon$-fraction of samples from a distribution $P$ are arbitrarily modified (global corruptions) and the remaining perturbations have average magnitude bounded by $\rho$ (local corruptions). Given access to $n$ such corrupted samples, we seek a computationally efficient estimator $\hat{P}_n$ that minimizes the Wasserstein distance $\mathsf{W}_1(\hat{P}_n,P)$. In fact, we attack the fine-grained task of minimizing $\mathsf{W}_1(\Pi_\# \hat{P}_n, \Pi_\# P)$ for all orthogonal projections $\Pi \in \mathbb{R}^{d \times d}$, with performance scaling with $\mathrm{rank}(\Pi) = k$. This allows us to account simultaneously for mean estimation ($k=1$), distribution estimation ($k=d$), as well as the settings interpolating between these two extremes. We characterize the optimal population-limit risk for this task and then develop an efficient finite-sample algorithm with error bounded by $\sqrt{\varepsilon k} + \rho + \tilde{O}(d\sqrt{k}n^{-1/(k \lor 2)})$ when $P$ has bounded covariance. This guarantee holds uniformly in $k$ and is minimax optimal up to the sub-optimality of the plug-in estimator when $\rho = \varepsilon = 0$. Our efficient procedure relies on a novel trace norm approximation of an ideal yet intractable 2-Wasserstein projection estimator. We apply this algorithm to robust stochastic optimization, and, in the process, uncover a new method for overcoming the curse of dimensionality in Wasserstein distributionally robust optimization.

We study the problem of computing pairwise statistics, i.e., ones of the form $\binom{n}{2}^{-1} \sum_{i \ne j} f(x_i, x_j)$, where $x_i$ denotes the input to the $i$th user, with differential privacy (DP) in the local model. This formulation captures important metrics such as Kendall's $\tau$ coefficient, Area Under Curve, Gini's mean difference, Gini's entropy, etc. We give several novel and generic algorithms for the problem, leveraging techniques from DP algorithms for linear queries.

A randomized algorithm for computing a data sparse representation of a given rank structured matrix $A$ (a.k.a. an $H$-matrix) is presented. The algorithm draws on the randomized singular value decomposition (RSVD), and operates under the assumption that algorithms for rapidly applying $A$ and $A^{*}$ to vectors are available. The algorithm analyzes the hierarchical tree that defines the rank structure using graph coloring algorithms to generate a set of random test vectors. The matrix is then applied to the test vectors, and in a final step the matrix itself is reconstructed by the observed input-output pairs. The method presented is an evolution of the "peeling algorithm" of L. Lin, J. Lu, and L. Ying, "Fast construction of hierarchical matrix representation from matrix-vector multiplication," JCP, 230(10), 2011. For the case of uniform trees, the new method substantially reduces the pre-factor of the original peeling algorithm. More significantly, the new technique leads to dramatic acceleration for many non-uniform trees since it constructs sample vectors that are optimized for a given tree. The algorithm is particularly effective for kernel matrices involving a set of points restricted to a lower dimensional object than the ambient space, such as a boundary integral equation defined on a surface in three dimensions.

The $k$-CombDMR problem is that of determining whether an $n \times n$ distance matrix can be realised by $n$ vertices in some undirected graph with $n + k$ vertices. This problem has a simple solution in the case $k=0$. In this paper we show that this problem is polynomial time solvable for $k=1$ and $k=2$. Moreover, we provide algorithms to construct such graph realisations by solving appropriate 2-SAT instances. In the case where $k \geq 3$, this problem is NP-complete. We show this by a reduction of the $k$-colourability problem to the $k$-CombDMR problem. Finally, we discuss the simpler polynomial time solvable problem of tree realisability for a given distance matrix.

The classical theory of Kosambi-Cartan-Chern (KCC) developed in differential geometry provides a powerful method for analyzing the behaviors of dynamical systems. In the KCC theory, the properties of a dynamical system are described in terms of five geometrical invariants, of which the second corresponds to the so-called Jacobi stability of the system. Different from that of the Lyapunov stability that has been studied extensively in the literature, the analysis of the Jacobi stability has been investigated more recently using geometrical concepts and tools. It turns out that the existing work on the Jacobi stability analysis remains theoretical and the problem of algorithmic and symbolic treatment of Jacobi stability analysis has yet to be addressed. In this paper, we initiate our study on the problem for a class of ODE systems of arbitrary dimension and propose two algorithmic schemes using symbolic computation to check whether a nonlinear dynamical system may exhibit Jacobi stability. The first scheme, based on the construction of the complex root structure of a characteristic polynomial and on the method of quantifier elimination, is capable of detecting the existence of the Jacobi stability of the given dynamical system. The second algorithmic scheme exploits the method of semi-algebraic system solving and allows one to determine conditions on the parameters for a given dynamical system to have a prescribed number of Jacobi stable fixed points. Several examples are presented to demonstrate the effectiveness of the proposed algorithmic schemes.

We prove that for monic polynomials $f, g \in \mathbb{C}[x]$ such that $g$ divides $f$, the $\ell_2$-norm of the quotient polynomial $f/g$ is bounded by $\lVert f \rVert_1 \cdot \tilde{O}(\lVert{g}\rVert_0^3\text{deg}^2{ f})^{\lVert{g}\rVert_0 - 1}$. This improves upon the previously known exponential (in $\text{deg}{ f}$) bounds for general polynomials. Our results implies that the trivial long division algorithm runs in quasi-linear time relative to the input size and number of terms of the quotient polynomial $f/g$, thus solving a long-standing problem on exact divisibility of sparse polynomials. We also study the problem of bounding the number of terms of $f/g$ in some special cases. When $f, g \in \mathbb{Z}[x]$ and $g$ is a cyclotomic-free (i.e., it has no cyclotomic factors) trinomial, we prove that $\lVert{f/g}\rVert_0 \leq O(\lVert{f}\rVert_0 \text{size}({f})^2 \cdot \log^6{\text{deg}{ g}})$. When $g$ is a binomial with $g(\pm 1) \neq 0$, we prove that the sparsity is at most $O(\lVert{f}\rVert_0 ( \log{\lVert{f}\rVert_0} + \log{\lVert{f}\rVert_{\infty}}))$. Both upper bounds are polynomial in the input-size. We leverage these results and give a polynomial time algorithm for deciding whether a cyclotomic-free trinomial divides a sparse polynomial over the integers. As our last result, we present a polynomial time algorithm for testing divisibility by pentanomials over small finite fields when $\text{deg}{ f} = \tilde{O}(\text{deg}{ g})$.

A toric code, introduced by Hansen to extend the Reed-Solomon code as a $k$-dimensional subspace of $\mathbb{F}_q^n$, is determined by a toric variety or its associated integral convex polytope $P \subseteq [0,q-2]^n$, where $k=|P \cap \mathbb{Z}^n|$ (the number of integer lattice points of $P$). There are two relevant parameters that determine the quality of a code: the information rate, which measures how much information is contained in a single bit of each codeword; and the relative minimum distance, which measures how many errors can be corrected relative to how many bits each codeword has. Soprunov and Soprunova defined a good infinite family of codes to be a sequence of codes of unbounded polytope dimension such that neither the corresponding information rates nor relative minimum distances go to 0 in the limit. We examine different ways of constructing families of codes by considering polytope operations such as the join and direct sum. In doing so, we give conditions under which no good family can exist and strong evidence that there is no such good family of codes.

北京阿比特科技有限公司