亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We show that $L^2$-accurate score estimation, in the absence of strong assumptions on the data distribution, is computationally hard even when sample complexity is polynomial in the relevant problem parameters. Our reduction builds on the result of Chen et al. (ICLR 2023), who showed that the problem of generating samples from an unknown data distribution reduces to $L^2$-accurate score estimation. Our hard-to-estimate distributions are the "Gaussian pancakes" distributions, originally due to Diakonikolas et al. (FOCS 2017), which have been shown to be computationally indistinguishable from the standard Gaussian under widely believed hardness assumptions from lattice-based cryptography (Bruna et al., STOC 2021; Gupte et al., FOCS 2022).

相關內容

We consider the performance of a least-squares regression model, as judged by out-of-sample $R^2$. Shapley values give a fair attribution of the performance of a model to its input features, taking into account interdependencies between features. Evaluating the Shapley values exactly requires solving a number of regression problems that is exponential in the number of features, so a Monte Carlo-type approximation is typically used. We focus on the special case of least-squares regression models, where several tricks can be used to compute and evaluate regression models efficiently. These tricks give a substantial speed up, allowing many more Monte Carlo samples to be evaluated, achieving better accuracy. We refer to our method as least-squares Shapley performance attribution (LS-SPA), and describe our open-source implementation.

An orientable sequence of order $n$ is a cyclic binary sequence such that each length-$n$ substring appears at most once \emph{in either direction}. Maximal length orientable sequences are known only for $n\leq 7$, and a trivial upper bound on their length is $2^{n-1} - 2^{\lfloor(n-1)/2\rfloor}$. This paper presents the first efficient algorithm to construct orientable sequences with asymptotically optimal length; more specifically, our algorithm constructs orientable sequences via cycle-joining and a successor-rule approach requiring $O(n)$ time per symbol and $O(n)$ space. This answers a longstanding open question from Dai, Martin, Robshaw, Wild [Cryptography and Coding III (1993)]. Our sequences are applied to find new longest-known orientable sequences for $n\leq 20$.

Copyright infringement may occur when a generative model produces samples substantially similar to some copyrighted data that it had access to during the training phase. The notion of access usually refers to including copyrighted samples directly in the training dataset, which one may inspect to identify an infringement. We argue that such visual auditing largely overlooks a concealed copyright infringement, where one constructs a disguise that looks drastically different from the copyrighted sample yet still induces the effect of training Latent Diffusion Models on it. Such disguises only require indirect access to the copyrighted material and cannot be visually distinguished, thus easily circumventing the current auditing tools. In this paper, we provide a better understanding of such disguised copyright infringement by uncovering the disguises generation algorithm, the revelation of the disguises, and importantly, how to detect them to augment the existing toolbox. Additionally, we introduce a broader notion of acknowledgment for comprehending such indirect access.

The decidability of axiomatic extensions of the modal logic K with modal reduction principles, i.e. axioms of the form $\Diamond^{k} p \rightarrow \Diamond^{n} p$, has remained a long-standing open problem. In this paper, we make significant progress toward solving this problem and show that decidability holds for a large subclass of these logics, namely, for 'quasi-dense logics.' Such logics are extensions of K with with modal reduction axioms such that $0 < k < n$ (dubbed 'quasi-density axioms'). To prove decidability, we define novel proof systems for quasi-dense logics consisting of disjunctive existential rules, which are first-order formulae typically used to specify ontologies in the context of database theory. We show that such proof systems can be used to generate proofs and models of modal formulae, and provide an intricate model-theoretic argument showing that such generated models can be encoded as finite objects called 'templates.' By enumerating templates of bound size, we obtain an EXPSPACE decision procedure as a consequence.

The purpose of a consensus protocol is to keep a distributed network of nodes "in sync," even in the presence of an unpredictable communication network and adversarial behavior by some of the participating nodes. In the permissionless setting, these nodes may be operated by unknown players, with each player free to use multiple identifiers and to start or stop running the protocol at any time. Establishing that a permissionless consensus protocol is "secure" thus requires both a distributed computing argument (that the protocol guarantees consistency and liveness unless the fraction of adversarial participation is sufficiently large) and an economic argument (that carrying out an attack would be prohibitively expensive for an attacker). There is a mature toolbox for assembling arguments of the former type; the goal of this paper is to lay the foundations for arguments of the latter type. An ideal permissionless consensus protocol would, in addition to satisfying standard consistency and liveness guarantees, render consistency violations prohibitively expensive for the attacker without collateral damage to honest participants. We make this idea precise with our notion of the EAAC (expensive to attack in the absence of collapse) property, and prove the following results: 1. In the synchronous and dynamically available setting, with an adversary that controls at least one-half of the overall resources, no protocol can be EAAC. 2. In the partially synchronous and quasi-permissionless setting, with an adversary that controls at least one-third of the overall resources, no protocol can be EAAC. 3. In the synchronous and quasi-permissionless setting, there is a proof-of-stake protocol that, provided the adversary controls less than two-thirds of the overall stake, satisfies the EAAC property. All three results are optimal with respect to the size of the adversary.

Channel simulation algorithms can efficiently encode random samples from a prescribed target distribution $Q$ and find applications in machine learning-based lossy data compression. However, algorithms that encode exact samples usually have random runtime, limiting their applicability when a consistent encoding time is desirable. Thus, this paper considers approximate schemes with a fixed runtime instead. First, we strengthen a result of Agustsson and Theis and show that there is a class of pairs of target distribution $Q$ and coding distribution $P$, for which the runtime of any approximate scheme scales at least super-polynomially in $D_\infty[Q \Vert P]$. We then show, by contrast, that if we have access to an unnormalised Radon-Nikodym derivative $r \propto dQ/dP$ and knowledge of $D_{KL}[Q \Vert P]$, we can exploit global-bound, depth-limited A* coding to ensure $\mathrm{TV}[Q \Vert P] \leq \epsilon$ and maintain optimal coding performance with a sample complexity of only $\exp_2\big((D_{KL}[Q \Vert P] + o(1)) \big/ \epsilon\big)$.

Suppose two separated parties, Alice and Bob, share a bipartite quantum state or a classical correlation called a \emph{seed}, and they try to generate a target classical correlation by performing local quantum or classical operations on the seed, i.e., any communications are not allowed. We consider the following fundamental problem about this setting: whether Alice and Bob can use a given seed to generate a target classical correlation. We show that this problem has rich mathematical structures. Firstly, we prove that even if the seed is a pure bipartite state, the above decision problem is already NP-hard and a similar conclusion can also be drawn when the seed is also a classical correlation, implying that this problem is hard to solve generally. Furthermore, we prove that when the seed is a pure quantum state, solving the problem is equivalent to finding out whether the target classical correlation has some diagonal form of positive semi-definite factorizations that matches the seed pure state, revealing an interesting connection between the current problem and optimization theory. Based on this observation and other insights, we give several necessary conditions where the seed pure state has to satisfy to generate the target classical correlation, and it turns out that these conditions can also be generalized to the case that the seed is a mixed quantum state. Lastly, since diagonal forms of positive semi-definite factorizations play a crucial role in solving the problem, we develop an algorithm that can compute them for an arbitrary classical correlation, which has decent performance on the cases we test.

For any set system $H=(V,R), \ R \subseteq 2^V$, a subset $S \subseteq V$ is called \emph{shattered} if every $S' \subseteq S$ results from the intersection of $S$ with some set in $\R$. The \emph{VC-dimension} of $H$ is the size of a largest shattered set in $V$. In this paper, we focus on the problem of computing the VC-dimension of graphs. In particular, given a graph $G=(V,E)$, the VC-dimension of $G$ is defined as the VC-dimension of $(V, \mathcal N)$, where $\mathcal N$ contains each subset of $V$ that can be obtained as the closed neighborhood of some vertex $v \in V$ in $G$. Our main contribution is an algorithm for computing the VC-dimension of any graph, whose effectiveness is shown through experiments on various types of practical graphs, including graphs with millions of vertices. A key aspect of its efficiency resides in the fact that practical graphs have small VC-dimension, up to 8 in our experiments. As a side-product, we present several new bounds relating the graph VC-dimension to other classical graph theoretical notions. We also establish the $W[1]$-hardness of the graph VC-dimension problem by extending a previous result for arbitrary set systems.

We study the stochastic bandit problem with ReLU neural network structure. We show that a $\tilde{O}(\sqrt{T})$ regret guarantee is achievable by considering bandits with one-layer ReLU neural networks; to the best of our knowledge, our work is the first to achieve such a guarantee. In this specific setting, we propose an OFU-ReLU algorithm that can achieve this upper bound. The algorithm first explores randomly until it reaches a linear regime, and then implements a UCB-type linear bandit algorithm to balance exploration and exploitation. Our key insight is that we can exploit the piecewise linear structure of ReLU activations and convert the problem into a linear bandit in a transformed feature space, once we learn the parameters of ReLU relatively accurately during the exploration stage. To remove dependence on model parameters, we design an OFU-ReLU+ algorithm based on a batching strategy, which can provide the same theoretical guarantee.

Computing the rotation distance between two binary trees with $n$ internal nodes efficiently (in $poly(n)$ time) is a long standing open question in the study of height balancing in tree data structures. In this paper, we initiate the study of this problem bounding the rank of the trees given at the input (defined by Ehrenfeucht and Haussler (1989) in the context of decision trees). We define the rank-bounded rotation distance between two given binary trees $T_1$ and $T_2$ (with $n$ internal nodes) of rank at most $r$, denoted by $d_r(T_1,T_2)$, as the length of the shortest sequence of rotations that transforms $T_1$ to $T_2$ with the restriction that the intermediate trees must be of rank at most $r$. We show that the rotation distance problem reduces in polynomial time to the rank bounded rotation distance problem. This motivates the study of the problem in the combinatorial and algorithmic frontiers. Observing that trees with rank $1$ coincide exactly with skew trees (binary trees where every internal node has at least one leaf as a child), we show the following results in this frontier : We present an $O(n^2)$ time algorithm for computing $d_1(T_1,T_2)$. That is, when the given trees are skew trees (we call this variant as skew rotation distance problem) - where the intermediate trees are restricted to be skew as well. In particular, our techniques imply that for any two skew trees $d(T_1,T_2) \le n^2$. We show the following upper bound : for any two trees $T_1$ and $T_2$ of rank at most $r_1$ and $r_2$ respectively, we have that: $d_r(T_1,T_2) \le n^2 (1+(2n+1)(r_1+r_2-2))$ where $r = max\{r_1,r_2\}$. This bound is asymptotically tight for $r=1$. En route our proof of the above theorems, we associate binary trees to permutations and bivariate polynomials, and prove several characterizations in the case of skew trees.

北京阿比特科技有限公司