亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the task of locally correcting, and locally list-correcting, multivariate linear functions over the domain $\{0,1\}^n$ over arbitrary fields and more generally Abelian groups. Such functions form error-correcting codes of relative distance $1/2$ and we give local-correction algorithms correcting up to nearly $1/4$-fraction errors making $\widetilde{\mathcal{O}}(\log n)$ queries. This query complexity is optimal up to $\mathrm{poly}(\log\log n)$ factors. We also give local list-correcting algorithms correcting $(1/2 - \varepsilon)$-fraction errors with $\widetilde{\mathcal{O}}_{\varepsilon}(\log n)$ queries. These results may be viewed as natural generalizations of the classical work of Goldreich and Levin whose work addresses the special case where the underlying group is $\mathbb{Z}_2$. By extending to the case where the underlying group is, say, the reals, we give the first non-trivial locally correctable codes (LCCs) over the reals (with query complexity being sublinear in the dimension (also known as message length)). The central challenge in constructing the local corrector is constructing ``nearly balanced vectors'' over $\{-1,1\}^n$ that span $1^n$ -- we show how to construct $\mathcal{O}(\log n)$ vectors that do so, with entries in each vector summing to $\pm1$. The challenge to the local-list-correction algorithms, given the local corrector, is principally combinatorial, i.e., in proving that the number of linear functions within any Hamming ball of radius $(1/2-\varepsilon)$ is $\mathcal{O}_{\varepsilon}(1)$. Getting this general result covering every Abelian group requires integrating a variety of known methods with some new combinatorial ingredients analyzing the structural properties of codewords that lie within small Hamming balls.

相關內容

We investigate the decidability of the monadic second-order (MSO) theory of the structure $\langle \mathbb{N};<,P_1, \ldots,P_k \rangle$, for various unary predicates $P_1,\ldots,P_k \subseteq \mathbb{N}$. We focus in particular on "arithmetic" predicates arising in the study of linear recurrence sequences, such as fixed-base powers $\mathsf{Pow}_k = \{k^n : n \in \mathbb{N}\}$, $k$-th powers $\mathsf{N}_k = \{n^k : n \in \mathbb{N}\}$, and the set of terms of the Fibonacci sequence $\mathsf{Fib} = \{0,1,2,3,5,8,13,\ldots\}$ (and similarly for other linear recurrence sequences having a single, non-repeated, dominant characteristic root). We obtain several new unconditional and conditional decidability results, a select sample of which are the following: $\bullet$ The MSO theory of $\langle \mathbb{N};<,\mathsf{Pow}_2, \mathsf{Fib} \rangle$ is decidable; $\bullet$ The MSO theory of $\langle \mathbb{N};<, \mathsf{Pow}_2, \mathsf{Pow}_3, \mathsf{Pow}_6 \rangle$ is decidable; $\bullet$ The MSO theory of $\langle \mathbb{N};<, \mathsf{Pow}_2, \mathsf{Pow}_3, \mathsf{Pow}_5 \rangle$ is decidable assuming Schanuel's conjecture; $\bullet$ The MSO theory of $\langle \mathbb{N};<, \mathsf{Pow}_4, \mathsf{N}_2 \rangle$ is decidable; $\bullet$ The MSO theory of $\langle \mathbb{N};<, \mathsf{Pow}_2, \mathsf{N}_2 \rangle$ is Turing-equivalent to the MSO theory of $\langle \mathbb{N};<,S \rangle$, where $S$ is the predicate corresponding to the binary expansion of $\sqrt{2}$. (As the binary expansion of $\sqrt{2}$ is widely believed to be normal, the corresponding MSO theory is in turn expected to be decidable.) These results are obtained by exploiting and combining techniques from dynamical systems, number theory, and automata theory.

The sign-constrained Stiefel manifold in $\mathbb{R}^{n\times r}$ is a segment of the Stiefel manifold with fixed signs (nonnegative or nonpositive) for some columns of the matrices. It includes the nonnegative Stiefel manifold as a special case. We present global and local error bounds that provide an inequality with easily computable residual functions and explicit coefficients to bound the distance from matrices in $\mathbb{R}^{n\times r}$ to the sign-constrained Stiefel manifold. Moreover, we show that the error bounds cannot be improved except for the multiplicative constants under some mild conditions, which explains why two square-root terms are necessary in the bounds when $1< r <n$ and why the $\ell_1$ norm can be used in the bounds when $r = n$ or $r = 1$ for the sign constraints and orthogonality, respectively. The error bounds are applied to derive exact penalty methods for minimizing a Lipschitz continuous function with orthogonality and sign constraints.

This paper outlines a methodology for constructing a geometrically smooth interpolatory curve in $\mathbb{R}^d$ applicable to oriented and flattenable points with $d\ge 2$. The construction involves four essential components: local functions, blending functions, redistributing functions, and gluing functions. The resulting curve possesses favorable attributes, including $G^2$ geometric smoothness, locality, the absence of cusps, and no self-intersection. Moreover, the algorithm is adaptable to various scenarios, such as preserving convexity, interpolating sharp corners, and ensuring sphere preservation. The paper substantiates the efficacy of the proposed method through the presentation of numerous numerical examples, offering a practical demonstration of its capabilities.

We consider the problem of multi-path entanglement distribution to a pair of nodes in a quantum network consisting of devices with non-deterministic entanglement swapping capabilities. Multi-path entanglement distribution enables a network to establish end-to-end entangled links across any number of available paths with pre-established link-level entanglement. Probabilistic entanglement swapping, on the other hand, limits the amount of entanglement that is shared between the nodes; this is especially the case when, due to architectural and other practical constraints, swaps must be performed in temporal proximity to each other. Limiting our focus to the case where only bipartite entangled states are generated across the network, we cast the problem as an instance of generalized flow maximization between two quantum end nodes wishing to communicate. We propose a mixed-integer quadratically constrained program (MIQCP) to solve this flow problem for networks with arbitrary topology. We then compute the overall network capacity, defined as the maximum number of EPR states distributed to users per time unit, by solving the flow problem for all possible network states generated by probabilistic entangled link presence and absence, and subsequently by averaging over all network state capacities. The MIQCP can also be applied to networks with multiplexed links. While our approach for computing the overall network capacity has the undesirable property that the total number of states grows exponentially with link multiplexing capability, it nevertheless yields an exact solution that serves as an upper bound comparison basis for the throughput performance of easily-implementable yet non-optimal entanglement routing algorithms. We apply our capacity computation method to several networks, including a topology based on SURFnet -- a backbone network used for research purposes in the Netherlands.

The treewidth boundedness problem for a logic asks for the existence of an upper bound on the treewidth of the models of a given formula in that logic. This problem is found to be undecidable for first order logic. We consider a generalization of Separation Logic over relational signatures, interpreted over standard relational structures, and describe an algorithm for the treewidth boundedness problem in the context of this logic.

We introduce and characterize the operational diversity order (ODO) in fading channels, as a proxy to the classical notion of diversity order at any arbitrary operational signal-to-noise ratio (SNR). Thanks to this definition, relevant insights are brought up in a number of cases: (i) We quantify that in line-of-sight scenarios an increased diversity order is attainable compared to that achieved asymptotically; (ii) this effect is attenuated, but still visible, in the presence of an additional dominant specular component; (iii) we confirm that the decay slope in Rayleigh product channels increases very slowly and never fully achieves unitary slope for finite values of SNR.

We study active learning methods for single index models of the form $F({\mathbf x}) = f(\langle {\mathbf w}, {\mathbf x}\rangle)$, where $f:\mathbb{R} \to \mathbb{R}$ and ${\mathbf x,\mathbf w} \in \mathbb{R}^d$. In addition to their theoretical interest as simple examples of non-linear neural networks, single index models have received significant recent attention due to applications in scientific machine learning like surrogate modeling for partial differential equations (PDEs). Such applications require sample-efficient active learning methods that are robust to adversarial noise. I.e., that work even in the challenging agnostic learning setting. We provide two main results on agnostic active learning of single index models. First, when $f$ is known and Lipschitz, we show that $\tilde{O}(d)$ samples collected via {statistical leverage score sampling} are sufficient to learn a near-optimal single index model. Leverage score sampling is simple to implement, efficient, and already widely used for actively learning linear models. Our result requires no assumptions on the data distribution, is optimal up to log factors, and improves quadratically on a recent ${O}(d^{2})$ bound of \cite{gajjar2023active}. Second, we show that $\tilde{O}(d)$ samples suffice even in the more difficult setting when $f$ is \emph{unknown}. Our results leverage tools from high dimensional probability, including Dudley's inequality and dual Sudakov minoration, as well as a novel, distribution-aware discretization of the class of Lipschitz functions.

We propose a volumetric formulation for computing the Optimal Transport problem defined on surfaces in $\mathbb{R}^3$, found in disciplines like optics, computer graphics, and computational methodologies. Instead of directly tackling the original problem on the surface, we define a new Optimal Transport problem on a thin tubular region, $T_{\epsilon}$, adjacent to the surface. This extension offers enhanced flexibility and simplicity for numerical discretization on Cartesian grids. The Optimal Transport mapping and potential function computed on $T_{\epsilon}$ are consistent with the original problem on surfaces. We demonstrate that, with the proposed volumetric approach, it is possible to use simple and straightforward numerical methods to solve Optimal Transport for $\Gamma = \mathbb{S}^2$ and the $2$-torus.

We consider a general proportional odds model for survival data under binary treatment, where the functional form of the covariates is left unspecified. We derive the efficient score for the conditional survival odds ratio given the covariates using modern semiparametric theory. The efficient score may be useful in the development of doubly robust estimators, although computational challenges remain.

We consider the construction of maximal families of polynomials over the finite field $\mathbb{F}_q$, all having the same degree $n$ and a nonzero constant term, where the degree of the GCD of any two polynomials is $d$ with $1 \le d\le n$. The motivation for this problem lies in a recent construction for subspace codes based on cellular automata. More precisely, the minimum distance of such subspace codes relates to the maximum degree $d$ of the pairwise GCD in this family of polynomials. Hence, characterizing the maximal families of such polynomials is equivalent to determining the maximum cardinality of the corresponding subspace codes for a given minimum distance. We first show a lower bound on the cardinality of such families, and then focus on the specific case where $d=1$. There, we characterize the maximal families of polynomials over the binary field $\mathbb{F}_2$. Our findings prompt several more open questions, which we plan to address in an extended version of this work.

北京阿比特科技有限公司