亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Massive false rumors emerging along with breaking news or trending topics severely hinder the truth. Existing rumor detection approaches achieve promising performance on the yesterday`s news, since there is enough corpus collected from the same domain for model training. However, they are poor at detecting rumors about unforeseen events especially those propagated in different languages due to the lack of training data and prior knowledge (i.e., low-resource regimes). In this paper, we propose an adversarial contrastive learning framework to detect rumors by adapting the features learned from well-resourced rumor data to that of the low-resourced. Our model explicitly overcomes the restriction of domain and/or language usage via language alignment and a novel supervised contrastive training paradigm. Moreover, we develop an adversarial augmentation mechanism to further enhance the robustness of low-resource rumor representation. Extensive experiments conducted on two low-resource datasets collected from real-world microblog platforms demonstrate that our framework achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.

相關內容

Among the seventeen Sustainable Development Goals (SDGs) proposed within the 2030 Agenda and adopted by all the United Nations member states, the Fifth SDG is a call for action to turn Gender Equality into a fundamental human right and an essential foundation for a better world. It includes the eradication of all types of violence against women. Within this context, the UC3M4Safety research team aims to develop Bindi. This is a cyber-physical system which includes embedded Artificial Intelligence algorithms, for user real-time monitoring towards the detection of affective states, with the ultimate goal of achieving the early detection of risk situations for women. On this basis, we make use of wearable affective computing including smart sensors, data encryption for secure and accurate collection of presumed crime evidence, as well as the remote connection to protecting agents. Towards the development of such system, the recordings of different laboratory and into-the-wild datasets are in process. These are contained within the UC3M4Safety Database. Thus, this paper presents and details the first release of WEMAC, a novel multi-modal dataset, which comprises a laboratory-based experiment for 47 women volunteers that were exposed to validated audio-visual stimuli to induce real emotions by using a virtual reality headset while physiological, speech signals and self-reports were acquired and collected. We believe this dataset will serve and assist research on multi-modal affective computing using physiological and speech information.

Modern machine learning (ML) models are becoming increasingly popular and are widely used in decision-making systems. However, studies have shown critical issues of ML discrimination and unfairness, which hinder their adoption on high-stake applications. Recent research on fair classifiers has drawn significant attention to develop effective algorithms to achieve fairness and good classification performance. Despite the great success of these fairness-aware machine learning models, most of the existing models require sensitive attributes to preprocess the data, regularize the model learning or postprocess the prediction to have fair predictions. However, sensitive attributes are often incomplete or even unavailable due to privacy, legal or regulation restrictions. Though we lack the sensitive attribute for training a fair model in the target domain, there might exist a similar domain that has sensitive attributes. Thus, it is important to exploit auxiliary information from the similar domain to help improve fair classification in the target domain. Therefore, in this paper, we study a novel problem of exploring domain adaptation for fair classification. We propose a new framework that can simultaneously estimate the sensitive attributes while learning a fair classifier in the target domain. Extensive experiments on real-world datasets illustrate the effectiveness of the proposed model for fair classification, even when no sensitive attributes are available in the target domain.

This paper investigates the problem of regret minimization in linear time-varying (LTV) dynamical systems. Due to the simultaneous presence of uncertainty and non-stationarity, designing online control algorithms for unknown LTV systems remains a challenging task. At a cost of NP-hard offline planning, prior works have introduced online convex optimization algorithms, although they suffer from nonparametric rate of regret. In this paper, we propose the first computationally tractable online algorithm with regret guarantees that avoids offline planning over the state linear feedback policies. Our algorithm is based on the optimism in the face of uncertainty (OFU) principle in which we optimistically select the best model in a high confidence region. Our algorithm is then more explorative when compared to previous approaches. To overcome non-stationarity, we propose either a restarting strategy (R-OFU) or a sliding window (SW-OFU) strategy. With proper configuration, our algorithm is attains sublinear regret $O(T^{2/3})$. These algorithms utilize data from the current phase for tracking variations on the system dynamics. We corroborate our theoretical findings with numerical experiments, which highlight the effectiveness of our methods. To the best of our knowledge, our study establishes the first model-based online algorithm with regret guarantees under LTV dynamical systems.

Federated learning (FL) has emerged to enable global model training over distributed clients' data while preserving its privacy. However, the global trained model is vulnerable to the evasion attacks especially, the adversarial examples (AEs), carefully crafted samples to yield false classification. Adversarial training (AT) is found to be the most promising approach against evasion attacks and it is widely studied for convolutional neural network (CNN). Recently, vision transformers have been found to be effective in many computer vision tasks. To the best of the authors' knowledge, there is no work that studied the feasibility of AT in a FL process for vision transformers. This paper investigates such feasibility with different federated model aggregation methods and different vision transformer models with different tokenization and classification head techniques. In order to improve the robust accuracy of the models with the not independent and identically distributed (Non-IID), we propose an extension to FedAvg aggregation method, called FedWAvg. By measuring the similarities between the last layer of the global model and the last layer of the client updates, FedWAvg calculates the weights to aggregate the local models updates. The experiments show that FedWAvg improves the robust accuracy when compared with other state-of-the-art aggregation methods.

Adversarial training for neural networks has been in the limelight in recent years. The advancement in neural network architectures over the last decade has led to significant improvement in their performance. It sparked an interest in their deployment for real-time applications. This process initiated the need to understand the vulnerability of these models to adversarial attacks. It is instrumental in designing models that are robust against adversaries. Recent works have proposed novel techniques to counter the adversaries, most often sacrificing natural accuracy. Most suggest training with an adversarial version of the inputs, constantly moving away from the original distribution. The focus of our work is to use abstract certification to extract a subset of inputs for (hence we call it 'soft') adversarial training. We propose a training framework that can retain natural accuracy without sacrificing robustness in a constrained setting. Our framework specifically targets moderately critical applications which require a reasonable balance between robustness and accuracy. The results testify to the idea of soft adversarial training for the defense against adversarial attacks. At last, we propose the scope of future work for further improvement of this framework.

Sequential recommendation as an emerging topic has attracted increasing attention due to its important practical significance. Models based on deep learning and attention mechanism have achieved good performance in sequential recommendation. Recently, the generative models based on Variational Autoencoder (VAE) have shown the unique advantage in collaborative filtering. In particular, the sequential VAE model as a recurrent version of VAE can effectively capture temporal dependencies among items in user sequence and perform sequential recommendation. However, VAE-based models suffer from a common limitation that the representational ability of the obtained approximate posterior distribution is limited, resulting in lower quality of generated samples. This is especially true for generating sequences. To solve the above problem, in this work, we propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation. Specifically, we first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes (AVB) framework, which enables our model to generate high-quality latent variables. Then, we employ the contrastive loss. The latent variables will be able to learn more personalized and salient characteristics by minimizing the contrastive loss. Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence. Finally, we conduct extensive experiments on four real-world datasets. The experimental results show that our proposed ACVAE model outperforms other state-of-the-art methods.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.

北京阿比特科技有限公司