亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper explores the instruction fine-tuning technique for speech semantic understanding by introducing a unified end-to-end (E2E) framework that generates semantic labels conditioned on a task-related prompt for audio data. We pre-train the model using large and diverse data, where instruction-speech pairs are constructed via a text-to-speech (TTS) system. Extensive experiments demonstrate that our proposed model significantly outperforms state-of-the-art (SOTA) models after fine-tuning downstream tasks. Furthermore, the proposed model achieves competitive performance in zero-shot and few-shot scenarios. To facilitate future work on instruction fine-tuning for speech-to-semantic tasks, we release our instruction dataset and code.

相關內容

The evaluation of machine-generated image captions poses an interesting yet persistent challenge. Effective evaluation measures must consider numerous dimensions of similarity, including semantic relevance, visual structure, object interactions, caption diversity, and specificity. Existing highly-engineered measures attempt to capture specific aspects, but fall short in providing a holistic score that aligns closely with human judgments. Here, we propose CLAIR, a novel method that leverages the zero-shot language modeling capabilities of large language models (LLMs) to evaluate candidate captions. In our evaluations, CLAIR demonstrates a stronger correlation with human judgments of caption quality compared to existing measures. Notably, on Flickr8K-Expert, CLAIR achieves relative correlation improvements over SPICE of 39.6% and over image-augmented methods such as RefCLIP-S of 18.3%. Moreover, CLAIR provides noisily interpretable results by allowing the language model to identify the underlying reasoning behind its assigned score. Code is available at //davidmchan.github.io/clair/

In this work, we study rapid, step-wise improvements of the loss in transformers when being confronted with multi-step decision tasks. We found that transformers struggle to learn the intermediate tasks, whereas CNNs have no such issue on the tasks we studied. When transformers learn the intermediate task, they do this rapidly and unexpectedly after both training and validation loss saturated for hundreds of epochs. We call these rapid improvements Eureka-moments, since the transformer appears to suddenly learn a previously incomprehensible task. Similar leaps in performance have become known as Grokking. In contrast to Grokking, for Eureka-moments, both the validation and the training loss saturate before rapidly improving. We trace the problem back to the Softmax function in the self-attention block of transformers and show ways to alleviate the problem. These fixes improve training speed. The improved models reach 95% of the baseline model in just 20% of training steps while having a much higher likelihood to learn the intermediate task, lead to higher final accuracy and are more robust to hyper-parameters.

The generative Artificial Intelligence (AI) tools based on Large Language Models (LLMs) use billions of parameters to extensively analyse large datasets and extract critical private information such as, context, specific details, identifying information etc. This have raised serious threats to user privacy and reluctance to use such tools. This article proposes the conceptual model called PrivChatGPT, a privacy-preserving model for LLMs that consists of two main components i.e., preserving user privacy during the data curation/pre-processing together with preserving private context and the private training process for large-scale data. To demonstrate its applicability, we show how a private mechanism could be integrated into the existing model for training LLMs to protect user privacy; specifically, we employed differential privacy and private training using Reinforcement Learning (RL). We measure the privacy loss and evaluate the measure of uncertainty or randomness once differential privacy is applied. It further recursively evaluates the level of privacy guarantees and the measure of uncertainty of public database and resources, during each update when new information is added for training purposes. To critically evaluate the use of differential privacy for private LLMs, we hypothetically compared other mechanisms e..g, Blockchain, private information retrieval, randomisation, for various performance measures such as the model performance and accuracy, computational complexity, privacy vs. utility etc. We conclude that differential privacy, randomisation, and obfuscation can impact utility and performance of trained models, conversely, the use of ToR, Blockchain, and PIR may introduce additional computational complexity and high training latency. We believe that the proposed model could be used as a benchmark for proposing privacy preserving LLMs for generative AI tools.

Creating music is iterative, requiring varied methods at each stage. However, existing AI music systems fall short in orchestrating multiple subsystems for diverse needs. To address this gap, we introduce Loop Copilot, a novel system that enables users to generate and iteratively refine music through an interactive, multi-round dialogue interface. The system uses a large language model to interpret user intentions and select appropriate AI models for task execution. Each backend model is specialized for a specific task, and their outputs are aggregated to meet the user's requirements. To ensure musical coherence, essential attributes are maintained in a centralized table. We evaluate the effectiveness of the proposed system through semi-structured interviews and questionnaires, highlighting its utility not only in facilitating music creation but also its potential for broader applications.

This paper presents an adaptive transformer model named SegmATRon for embodied image semantic segmentation. Its distinctive feature is the adaptation of model weights during inference on several images using a hybrid multicomponent loss function. We studied this model on datasets collected in the photorealistic Habitat and the synthetic AI2-THOR Simulators. We showed that obtaining additional images using the agent's actions in an indoor environment can improve the quality of semantic segmentation. The code of the proposed approach and datasets are publicly available at //github.com/wingrune/SegmATRon.

Data documents play a central role in recording, presenting, and disseminating data. Despite the proliferation of applications and systems designed to support the analysis, visualization, and communication of data, writing data documents remains a laborious process, requiring a constant back-and-forth between data processing and writing tools. Interviews with eight professionals revealed that their workflows contained numerous tedious, repetitive, and error-prone operations. The key issue that we identified is the lack of persistent connection between text and data. Thus, we developed CrossData, a prototype that treats text-data connections as persistent, interactive, first-class objects. By automatically identifying, establishing, and leveraging text-data connections, CrossData enables rich interactions to assist in the authoring of data documents. An expert evaluation with eight users demonstrated the usefulness of CrossData, showing that it not only reduced the manual effort in writing data documents but also opened new possibilities to bridge the gap between data exploration and writing.

This paper surveys research works in the quickly advancing field of instruction tuning (IT), a crucial technique to enhance the capabilities and controllability of large language models (LLMs). Instruction tuning refers to the process of further training LLMs on a dataset consisting of \textsc{(instruction, output)} pairs in a supervised fashion, which bridges the gap between the next-word prediction objective of LLMs and the users' objective of having LLMs adhere to human instructions. In this work, we make a systematic review of the literature, including the general methodology of IT, the construction of IT datasets, the training of IT models, and applications to different modalities, domains and applications, along with an analysis on aspects that influence the outcome of IT (e.g., generation of instruction outputs, size of the instruction dataset, etc). We also review the potential pitfalls of IT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies and suggest some avenues for fruitful research.

Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.

北京阿比特科技有限公司