亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The theory of mixed finite element methods for solving different types of elliptic partial differential equations in saddle-point formulation is well established since many decades. However, this topic was mostly studied for variational formulations defined upon the same finite-element product spaces of both shape- and test-pairs of primal variable-multiplier. Whenever these two product spaces are different the saddle point problem is asymmetric. It turns out that the conditions to be satisfied by the finite elements product spaces stipulated in the few works on this case may be of limited use in practice. The purpose of this paper is to provide an in-depth analysis of the well-posedness and the uniform stability of asymmetric approximate saddle point problems, based on the theory of continuous linear operators on Hilbert spaces. Our approach leads to necessary and sufficient conditions for such properties to hold, expressed in a readily exploitable form with fine constants. In particular standard interpolation theory suffices to estimate the error of a conforming method.

相關內容

在(zai)數(shu)學中,鞍點或(huo)極大極小(xiao)點是函(han)數(shu)圖形表面(mian)上的(de)一(yi)點,其正交(jiao)方向(xiang)上的(de)斜率(導數(shu))都(dou)為(wei)零,但它不是函(han)數(shu)的(de)局部極值。鞍點是在(zai)某(mou)一(yi)軸向(xiang)(峰值之間)有一(yi)個(ge)相對(dui)最(zui)(zui)小(xiao)的(de)臨界點,在(zai)交(jiao)叉(cha)軸上有一(yi)個(ge)相對(dui)最(zui)(zui)大的(de)臨界點。

We consider geometric numerical integration algorithms for differential equations evolving on symmetric spaces. The integrators are constructed from canonical operations on the symmetric space, its Lie triple system (LTS), and the exponential from the LTS to the symmetric space. Examples of symmetric spaces are n-spheres and Grassmann manifolds, the space of positive definite symmetric matrices, Lie groups with a symmetric product, and elliptic and hyperbolic spaces with constant sectional curvatures. We illustrate the abstract algorithm with concrete examples. In particular for the n-sphere and the n-dimensional hyperbolic space the resulting algorithms are very simple and cost only O(n) operations per step.

This work introduces a stabilised finite element formulation for the Stokes flow problem with a nonlinear slip boundary condition of friction type. The boundary condition is enforced with the help of an additional Lagrange multiplier and the stabilised formulation is based on simultaneously stabilising both the pressure and the Lagrange multiplier. We establish the stability and the a priori error analyses, and perform a numerical convergence study in order to verify the theory.

We establish optimal error bounds on time-splitting methods for the nonlinear Schr\"odinger equation with low regularity potential and typical power-type nonlinearity $ f(\rho) = \rho^\sigma $, where $ \rho:=|\psi|^2 $ is the density with $ \psi $ the wave function and $ \sigma > 0 $ the exponent of the nonlinearity. For the first-order Lie-Trotter time-splitting method, optimal $ L^2 $-norm error bound is proved for $L^\infty$-potential and $ \sigma > 0 $, and optimal $H^1$-norm error bound is obtained for $ W^{1, 4} $-potential and $ \sigma \geq 1/2 $. For the second-order Strang time-splitting method, optimal $ L^2 $-norm error bound is established for $H^2$-potential and $ \sigma \geq 1 $, and optimal $H^1$-norm error bound is proved for $H^3$-potential and $ \sigma \geq 3/2 $. Compared to those error estimates of time-splitting methods in the literature, our optimal error bounds either improve the convergence rates under the same regularity assumptions or significantly relax the regularity requirements on potential and nonlinearity for optimal convergence orders. A key ingredient in our proof is to adopt a new technique called \textit{regularity compensation oscillation} (RCO), where low frequency modes are analyzed by phase cancellation, and high frequency modes are estimated by regularity of the solution. Extensive numerical results are reported to confirm our error estimates and to demonstrate that they are sharp.

Combining sum factorization, weighted quadrature, and row-based assembly enables efficient higher-order computations for tensor product splines. We aim to transfer these concepts to immersed boundary methods, which perform simulations on a regular background mesh cut by a boundary representation that defines the domain of interest. Therefore, we present a novel concept to divide the support of cut basis functions to obtain regular parts suited for sum factorization. These regions require special discontinuous weighted quadrature rules, while Gauss-like quadrature rules integrate the remaining support. Two linear elasticity benchmark problems confirm the derived estimate for the computational costs of the different integration routines and their combination. Although the presence of cut elements reduces the speed-up, its contribution to the overall computation time declines with h-refinement.

Given two prime monotone boolean functions $f:\{0,1\}^n \to \{0,1\}$ and $g:\{0,1\}^n \to \{0,1\}$ the dualization problem consists in determining if $g$ is the dual of $f$, that is if $f(x_1, \dots, x_n)= \overline{g}(\overline{x_1}, \dots \overline{x_n})$ for all $(x_1, \dots x_n) \in \{0,1\}^n$. Associated to the dualization problem there is the corresponding decision problem: given two monotone prime boolean functions $f$ and $g$ is $g$ the dual of $f$? In this paper we present a quantum computing algorithm that solves the decision version of the dualization problem in polynomial time.

We study the continuous multi-reference alignment model of estimating a periodic function on the circle from noisy and circularly-rotated observations. Motivated by analogous high-dimensional problems that arise in cryo-electron microscopy, we establish minimax rates for estimating generic signals that are explicit in the dimension $K$. In a high-noise regime with noise variance $\sigma^2 \gtrsim K$, for signals with Fourier coefficients of roughly uniform magnitude, the rate scales as $\sigma^6$ and has no further dependence on the dimension. This rate is achieved by a bispectrum inversion procedure, and our analyses provide new stability bounds for bispectrum inversion that may be of independent interest. In a low-noise regime where $\sigma^2 \lesssim K/\log K$, the rate scales instead as $K\sigma^2$, and we establish this rate by a sharp analysis of the maximum likelihood estimator that marginalizes over latent rotations. A complementary lower bound that interpolates between these two regimes is obtained using Assouad's hypercube lemma. We extend these analyses also to signals whose Fourier coefficients have a slow power law decay.

A Milstein-type method is proposed for some highly non-linear non-autonomous time-changed stochastic differential equations (SDEs). The spatial variables in the coefficients of the time-changed SDEs satisfy the super-linear growth condition and the temporal variables obey some H\"older's continuity condition. The strong convergence in the finite time is studied and the convergence order is obtained.

This paper deals with speeding up the convergence of a class of two-step iterative methods for solving linear systems of equations. To implement the acceleration technique, the residual norm associated with computed approximations for each sub-iterate is minimized over a certain two-dimensional subspace. Convergence properties of the proposed method are studied in detail. The approach is further developed to solve (regularized) normal equations arising from the discretization of ill-posed problems. The results of numerical experiments are reported to illustrate the performance of exact and inexact variants of the method on several test problems from different application areas.

The numerical solution of continuum damage mechanics (CDM) problems suffers from critical points during the material softening stage, and consequently existing iterative solvers are subject to a trade-off between computational expense and solution accuracy. Displacement-controlled arc-length methods were developed to address these challenges, but are currently applicable only to geometrically non-linear problems. In this work, we present a novel displacement-controlled arc-length (DAL) method for CDM problems in both local damage and non-local gradient damage versions. The analytical tangent matrix is derived for the DAL solver in both of the local and the non-local models. In addition, several consistent and non-consistent implementation algorithms are proposed, implemented, and evaluated. Unlike existing force-controlled arc-length solvers that monolithically scale the external force vector, the proposed method treats the external force vector as an independent variable and determines the position of the system on the equilibrium path based on all the nodal variations of the external force vector. Such a flexible approach renders the proposed solver to be substantially more efficient and versatile than existing solvers used in CDM problems. The considerable advantages of the proposed DAL algorithm are demonstrated against several benchmark 1D problems with sharp snap-backs and 2D examples with various boundary conditions and loading scenarios, where the proposed method drastically outperforms existing conventional approaches in terms of accuracy, computational efficiency, and the ability to predict the complete equilibrium path including all critical points.

We discuss a system of stochastic differential equations with a stiff linear term and additive noise driven by fractional Brownian motions (fBms) with Hurst parameter H>1/2, which arise e. g., from spatial approximations of stochastic partial differential equations. For their numerical approximation, we present an exponential Euler scheme and show that it converges in the strong sense with an exact rate close to the Hurst parameter H. Further, based on [2], we conclude the existence of a unique stationary solution of the exponential Euler scheme that is pathwise asymptotically stable.

北京阿比特科技有限公司