亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A Physics-Informed Neural Network (PINN) provides a distinct advantage by synergizing neural networks' capabilities with the problem's governing physical laws. In this study, we introduce an innovative approach for solving seepage problems by utilizing the PINN, harnessing the capabilities of Deep Neural Networks (DNNs) to approximate hydraulic head distributions in seepage analysis. To effectively train the PINN model, we introduce a comprehensive loss function comprising three components: one for evaluating differential operators, another for assessing boundary conditions, and a third for appraising initial conditions. The validation of the PINN involves solving four benchmark seepage problems. The results unequivocally demonstrate the exceptional accuracy of the PINN in solving seepage problems, surpassing the accuracy of FEM in addressing both steady-state and free-surface seepage problems. Hence, the presented approach highlights the robustness of the PINN and underscores its precision in effectively addressing a spectrum of seepage challenges. This amalgamation enables the derivation of accurate solutions, overcoming limitations inherent in conventional methods such as mesh generation and adaptability to complex geometries.

相關內容

神經網絡(Neural Networks)是世界上三個最古老的神經建模學會的檔案期刊:國際神經網絡學會(INNS)、歐洲神經網絡學會(ENNS)和日本神經網絡學會(JNNS)。神經網絡提供了一個論壇,以發展和培育一個國際社會的學者和實踐者感興趣的所有方面的神經網絡和相關方法的計算智能。神經網絡歡迎高質量論文的提交,有助于全面的神經網絡研究,從行為和大腦建模,學習算法,通過數學和計算分析,系統的工程和技術應用,大量使用神經網絡的概念和技術。這一獨特而廣泛的范圍促進了生物和技術研究之間的思想交流,并有助于促進對生物啟發的計算智能感興趣的跨學科社區的發展。因此,神經網絡編委會代表的專家領域包括心理學,神經生物學,計算機科學,工程,數學,物理。該雜志發表文章、信件和評論以及給編輯的信件、社論、時事、軟件調查和專利信息。文章發表在五個部分之一:認知科學,神經科學,學習系統,數學和計算分析、工程和應用。 官網地址:

While deep neural networks have achieved remarkable performance, data augmentation has emerged as a crucial strategy to mitigate overfitting and enhance network performance. These techniques hold particular significance in industrial manufacturing contexts. Recently, image mixing-based methods have been introduced, exhibiting improved performance on public benchmark datasets. However, their application to industrial tasks remains challenging. The manufacturing environment generates massive amounts of unlabeled data on a daily basis, with only a few instances of abnormal data occurrences. This leads to severe data imbalance. Thus, creating well-balanced datasets is not straightforward due to the high costs associated with labeling. Nonetheless, this is a crucial step for enhancing productivity. For this reason, we introduce ContextMix, a method tailored for industrial applications and benchmark datasets. ContextMix generates novel data by resizing entire images and integrating them into other images within the batch. This approach enables our method to learn discriminative features based on varying sizes from resized images and train informative secondary features for object recognition using occluded images. With the minimal additional computation cost of image resizing, ContextMix enhances performance compared to existing augmentation techniques. We evaluate its effectiveness across classification, detection, and segmentation tasks using various network architectures on public benchmark datasets. Our proposed method demonstrates improved results across a range of robustness tasks. Its efficacy in real industrial environments is particularly noteworthy, as demonstrated using the passive component dataset.

Empirical studies have widely demonstrated that neural networks are highly sensitive to small, adversarial perturbations of the input. The worst-case robustness against these so-called adversarial examples can be quantified by the Lipschitz constant of the neural network. In this paper, we study upper and lower bounds for the Lipschitz constant of random ReLU neural networks. Specifically, we assume that the weights and biases follow a generalization of the He initialization, where general symmetric distributions for the biases are permitted. For shallow neural networks, we characterize the Lipschitz constant up to an absolute numerical constant. For deep networks with fixed depth and sufficiently large width, our established upper bound is larger than the lower bound by a factor that is logarithmic in the width.

This paper investigates the replication of experiments by Billock and Tsou [PNAS, 2007] using the controllability of neural fields of Amari-type modelling the cortical activity in the primary visual cortex (V1), focusing on a regular funnel pattern localised in the fovea or the peripheral visual field. The aim is to understand and model the visual phenomena observed in these experiments, emphasising their nonlinear nature. The study involves designing sensory inputs simulating the visual stimuli from Billock and Tsou's experiments. The after-images induced by these inputs are then theoretically and numerically studied to determine their capacity to replicate the experimentally observed visual effects. A key aspect of this research is investigating the effects induced by the nonlinear nature of neural responses. In particular, by highlighting the importance of both excitatory and inhibitory neurons in the emergence of certain visual phenomena, this study suggests that an interplay of both types of neuronal activities plays an essential role in visual processes, challenging the assumption that the latter is mainly driven by excitatory activities alone.

Physically implemented neural networks hold the potential to achieve the performance of deep learning models by exploiting the innate physical properties of devices as computational tools. This exploration of physical processes for computation requires to also consider their intrinsic dynamics, which can serve as valuable resources to process information. However, existing computational methods are unable to extend the success of deep learning techniques to parameters influencing device dynamics, which often lack a precise mathematical description. In this work, we formulate a universal framework to optimise interactions with dynamic physical systems in a fully data-driven fashion. The framework adopts neural stochastic differential equations as differentiable digital twins, effectively capturing both deterministic and stochastic behaviours of devices. Employing differentiation through the trained models provides the essential mathematical estimates for optimizing a physical neural network, harnessing the intrinsic temporal computation abilities of its physical nodes. To accurately model real devices' behaviours, we formulated neural-SDE variants that can operate under a variety of experimental settings. Our work demonstrates the framework's applicability through simulations and physical implementations of interacting dynamic devices, while highlighting the importance of accurately capturing system stochasticity for the successful deployment of a physically defined neural network.

Recently, there has been a growing interest in the relationships between unrooted and rooted phylogenetic networks. In this context, a natural question to ask is if an unrooted phylogenetic network U can be oriented as a rooted phylogenetic network such that the latter satisfies certain structural properties. In a recent preprint, Bulteau et al. claim that it is computational hard to decide if U has a funneled (resp. funneled tree-child) orientation, for when the internal vertices of U have degree at most 5. Unfortunately, the proof of their funneled tree-child result appears to be incorrect. In this paper, we present a corrected proof and show that hardness remains for other popular classes of rooted phylogenetic networks such as funneled normal and funneled reticulation-visible. Additionally, our results hold regardless of whether U is rooted at an existing vertex or by subdividing an edge with the root.

We introduce a novel neuromorphic network architecture based on a lattice of exciton-polariton condensates, intricately interconnected and energized through non-resonant optical pumping. The network employs a binary framework, where each neuron, facilitated by the spatial coherence of pairwise coupled condensates, performs binary operations. This coherence, emerging from the ballistic propagation of polaritons, ensures efficient, network-wide communication. The binary neuron switching mechanism, driven by the nonlinear repulsion through the excitonic component of polaritons, offers computational efficiency and scalability advantages over continuous weight neural networks. Our network enables parallel processing, enhancing computational speed compared to sequential or pulse-coded binary systems. The system's performance was evaluated using the MNIST dataset for handwritten digit recognition, showcasing the potential to outperform existing polaritonic neuromorphic systems, as demonstrated by its impressive predicted classification accuracy of up to 97.5%.

In this paper we address the importance and the impact of employing structure preserving neural networks as surrogate of the analytical physics-based models typically employed to describe the rheology of non-Newtonian fluids in Stokes flows. In particular, we propose and test on real-world scenarios a novel strategy to build data-driven rheological models based on the use of Input-Output Convex Neural Networks (ICNNs), a special class of feedforward neural network scalar valued functions that are convex with respect to their inputs. Moreover, we show, through a detailed campaign of numerical experiments, that the use of ICNNs is of paramount importance to guarantee the well-posedness of the associated non-Newtonian Stokes differential problem. Finally, building upon a novel perturbation result for non-Newtonian Stokes problems, we study the impact of our data-driven ICNN based rheological model on the accuracy of the finite element approximation.

Physics-informed neural networks (PINNs) have shown remarkable prospects in the solving the forward and inverse problems involving partial differential equations (PDEs). The method embeds PDEs into the neural network by calculating PDE loss at a series of collocation points, providing advantages such as meshfree and more convenient adaptive sampling. However, when solving PDEs using nonuniform collocation points, PINNs still face challenge regarding inefficient convergence of PDE residuals or even failure. In this work, we first analyze the ill-conditioning of the PDE loss in PINNs under nonuniform collocation points. To address the issue, we define volume-weighted residual and propose volume-weighted physics-informed neural networks (VW-PINNs). Through weighting the PDE residuals by the volume that the collocation points occupy within the computational domain, we embed explicitly the spatial distribution characteristics of collocation points in the residual evaluation. The fast and sufficient convergence of the PDE residuals for the problems involving nonuniform collocation points is guaranteed. Considering the meshfree characteristics of VW-PINNs, we also develop a volume approximation algorithm based on kernel density estimation to calculate the volume of the collocation points. We verify the universality of VW-PINNs by solving the forward problems involving flow over a circular cylinder and flow over the NACA0012 airfoil under different inflow conditions, where conventional PINNs fail; By solving the Burgers' equation, we verify that VW-PINNs can enhance the efficiency of existing the adaptive sampling method in solving the forward problem by 3 times, and can reduce the relative error of conventional PINNs in solving the inverse problem by more than one order of magnitude.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

Nowadays, the Convolutional Neural Networks (CNNs) have achieved impressive performance on many computer vision related tasks, such as object detection, image recognition, image retrieval, etc. These achievements benefit from the CNNs outstanding capability to learn the input features with deep layers of neuron structures and iterative training process. However, these learned features are hard to identify and interpret from a human vision perspective, causing a lack of understanding of the CNNs internal working mechanism. To improve the CNN interpretability, the CNN visualization is well utilized as a qualitative analysis method, which translates the internal features into visually perceptible patterns. And many CNN visualization works have been proposed in the literature to interpret the CNN in perspectives of network structure, operation, and semantic concept. In this paper, we expect to provide a comprehensive survey of several representative CNN visualization methods, including Activation Maximization, Network Inversion, Deconvolutional Neural Networks (DeconvNet), and Network Dissection based visualization. These methods are presented in terms of motivations, algorithms, and experiment results. Based on these visualization methods, we also discuss their practical applications to demonstrate the significance of the CNN interpretability in areas of network design, optimization, security enhancement, etc.

北京阿比特科技有限公司