A periodic lattice in Euclidean space is the infinite set of all integer linear combinations of basis vectors. Any lattice can be generated by infinitely many different bases. Motivated by rigid crystal structures, we consider lattices up to rigid motion or isometry, which preserves inter-point distances. Then all isometry classes of lattices form a continuous space. There are several parameterisations of this space in dimensions two and three, but this is the first which is not discontinuous in singular cases. We introduce new continuous coordinates (root products) on the space of lattices and new metrics between root forms satisfying all metric axioms and continuity under all perturbations. The root forms allow visualisations of hundreds of thousands of real crystal lattices from the Cambridge Structural Database for the first time.
Modeling the subgrid-scale dynamics of reduced models is a long standing open problem that finds application in ocean, atmosphere and climate predictions where direct numerical simulation (DNS) is impossible. While neural networks (NNs) have already been applied to a range of three-dimensional problems with success, the backward energy transfer of two-dimensional flows still remains a stability issue for trained models. We show that learning a model jointly with the dynamical solver and a meaningful $\textit{a posteriori}$-based loss function lead to stable and realistic simulations when applied to quasi-geostrophic turbulence.
Computational fluctuating hydrodynamics aims at understanding the impact of thermal fluctuations on fluid motions at small scales through numerical exploration. These fluctuations are modeled as stochastic flux terms and incorporated into the classical Navier-Stokes equations, which need to be solved numerically. In this paper, we present a novel projection-based method for solving the incompressible fluctuating hydrodynamics equations. By analyzing the equilibrium structure factor spectrum of the velocity field, we investigate how the inherent splitting errors affect the numerical solution of the stochastic partial differential equations in the presence of non-periodic boundary conditions, and how iterative corrections can reduce these errors. Our computational examples demonstrate both the capability of our approach to reproduce correctly stochastic properties of fluids at small scales as well as its potential use in the simulations of multi-physics problems.
We introduce a universal framework for characterizing the statistical efficiency of a statistical estimation problem with differential privacy guarantees. Our framework, which we call High-dimensional Propose-Test-Release (HPTR), builds upon three crucial components: the exponential mechanism, robust statistics, and the Propose-Test-Release mechanism. Gluing all these together is the concept of resilience, which is central to robust statistical estimation. Resilience guides the design of the algorithm, the sensitivity analysis, and the success probability analysis of the test step in Propose-Test-Release. The key insight is that if we design an exponential mechanism that accesses the data only via one-dimensional robust statistics, then the resulting local sensitivity can be dramatically reduced. Using resilience, we can provide tight local sensitivity bounds. These tight bounds readily translate into near-optimal utility guarantees in several cases. We give a general recipe for applying HPTR to a given instance of a statistical estimation problem and demonstrate it on canonical problems of mean estimation, linear regression, covariance estimation, and principal component analysis. We introduce a general utility analysis technique that proves that HPTR nearly achieves the optimal sample complexity under several scenarios studied in the literature.
In this paper we use the theory of computing to study fractal dimensions of projections in Euclidean spaces. A fundamental result in fractal geometry is Marstrand's projection theorem, which shows that for every analytic set E, for almost every line L, the Hausdorff dimension of the orthogonal projection of E onto L is maximal. We use Kolmogorov complexity to give two new results on the Hausdorff and packing dimensions of orthogonal projections onto lines. The first shows that the conclusion of Marstrand's theorem holds whenever the Hausdorff and packing dimensions agree on the set E, even if E is not analytic. Our second result gives a lower bound on the packing dimension of projections of arbitrary sets. Finally, we give a new proof of Marstrand's theorem using the theory of computing.
A delayed-acceptance version of a Metropolis--Hastings algorithm can be useful for Bayesian inference when it is computationally expensive to calculate the true posterior, but a computationally cheap approximation is available; the delayed-acceptance kernel targets the same posterior as its associated "parent" Metropolis-Hastings kernel. Although the asymptotic variance of the ergodic average of any functional of the chain cannot be less than that obtained using its parent, the average computational time per iteration can be much smaller and so for a given computational budget the delayed-acceptance kernel can be more efficient. When the asymptotic variance of the ergodic averages of all $L^2$ functionals of the chain is finite, the kernel is said to be variance bounding. It has recently been noted that a delayed-acceptance kernel need not be variance bounding even when its parent is. We provide sufficient conditions for inheritance: for non-local algorithms, such as the independence sampler, the discrepancy between the log density of the approximation and that of the truth should be bounded; for local algorithms, two alternative sets of conditions are provided. As a by-product of our initial, general result we also supply sufficient conditions on any pair of proposals such that, for any shared target distribution, if a Metropolis-Hastings kernel using one of the proposals is variance bounding then so is the Metropolis-Hastings kernel using the other proposal.
Exploration is one of the most important tasks in Reinforcement Learning, but it is not well-defined beyond finite problems in the Dynamic Programming paradigm (see Subsection 2.4). We provide a reinterpretation of exploration which can be applied to any online learning method. We come to this definition by approaching exploration from a new direction. After finding that concepts of exploration created to solve simple Markov decision processes with Dynamic Programming are no longer broadly applicable, we reexamine exploration. Instead of extending the ends of dynamic exploration procedures, we extend their means. That is, rather than repeatedly sampling every state-action pair possible in a process, we define the act of modifying an agent to itself be explorative. The resulting definition of exploration can be applied in infinite problems and non-dynamic learning methods, which the dynamic notion of exploration cannot tolerate. To understand the way that modifications of an agent affect learning, we describe a novel structure on the set of agents: a collection of distances (see footnote 7) $d_{a} \in A$, which represent the perspectives of each agent possible in the process. Using these distances, we define a topology and show that many important structures in Reinforcement Learning are well behaved under the topology induced by convergence in the agent space.
Advances in information technology have led to extremely large datasets that are often kept in different storage centers. Existing statistical methods must be adapted to overcome the resulting computational obstacles while retaining statistical validity and efficiency. Split-and-conquer approaches have been applied in many areas, including quantile processes, regression analysis, principal eigenspaces, and exponential families. We study split-and-conquer approaches for the distributed learning of finite Gaussian mixtures. We recommend a reduction strategy and develop an effective MM algorithm. The new estimator is shown to be consistent and retains root-n consistency under some general conditions. Experiments based on simulated and real-world data show that the proposed split-and-conquer approach has comparable statistical performance with the global estimator based on the full dataset, if the latter is feasible. It can even slightly outperform the global estimator if the model assumption does not match the real-world data. It also has better statistical and computational performance than some existing methods.
Feature attribution is often loosely presented as the process of selecting a subset of relevant features as a rationale of a prediction. This lack of clarity stems from the fact that we usually do not have access to any notion of ground-truth attribution and from a more general debate on what good interpretations are. In this paper we propose to formalise feature selection/attribution based on the concept of relaxed functional dependence. In particular, we extend our notions to the instance-wise setting and derive necessary properties for candidate selection solutions, while leaving room for task-dependence. By computing ground-truth attributions on synthetic datasets, we evaluate many state-of-the-art attribution methods and show that, even when optimised, some fail to verify the proposed properties and provide wrong solutions.
The problem of Approximate Nearest Neighbor (ANN) search is fundamental in computer science and has benefited from significant progress in the past couple of decades. However, most work has been devoted to pointsets whereas complex shapes have not been sufficiently treated. Here, we focus on distance functions between discretized curves in Euclidean space: they appear in a wide range of applications, from road segments to time-series in general dimension. For $\ell_p$-products of Euclidean metrics, for any $p$, we design simple and efficient data structures for ANN, based on randomized projections, which are of independent interest. They serve to solve proximity problems under a notion of distance between discretized curves, which generalizes both discrete Fr\'echet and Dynamic Time Warping distances. These are the most popular and practical approaches to comparing such curves. We offer the first data structures and query algorithms for ANN with arbitrarily good approximation factor, at the expense of increasing space usage and preprocessing time over existing methods. Query time complexity is comparable or significantly improved by our algorithms, our algorithm is especially efficient when the length of the curves is bounded.
In this paper, we propose a nonlinear distance metric learning scheme based on the fusion of component linear metrics. Instead of merging displacements at each data point, our model calculates the velocities induced by the component transformations, via a geodesic interpolation on a Lie transfor- mation group. Such velocities are later summed up to produce a global transformation that is guaranteed to be diffeomorphic. Consequently, pair-wise distances computed this way conform to a smooth and spatially varying metric, which can greatly benefit k-NN classification. Experiments on synthetic and real datasets demonstrate the effectiveness of our model.