亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Feature attribution is often loosely presented as the process of selecting a subset of relevant features as a rationale of a prediction. This lack of clarity stems from the fact that we usually do not have access to any notion of ground-truth attribution and from a more general debate on what good interpretations are. In this paper we propose to formalise feature selection/attribution based on the concept of relaxed functional dependence. In particular, we extend our notions to the instance-wise setting and derive necessary properties for candidate selection solutions, while leaving room for task-dependence. By computing ground-truth attributions on synthetic datasets, we evaluate many state-of-the-art attribution methods and show that, even when optimised, some fail to verify the proposed properties and provide wrong solutions.

相關內容

Many data analysis problems can be cast as distance geometry problems in \emph{space forms} -- Euclidean, spherical, or hyperbolic spaces. Often, absolute distance measurements are often unreliable or simply unavailable and only proxies to absolute distances in the form of similarities are available. Hence we ask the following: Given only \emph{comparisons} of similarities amongst a set of entities, what can be said about the geometry of the underlying space form? To study this question, we introduce the notions of the \textit{ordinal capacity} of a target space form and \emph{ordinal spread} of the similarity measurements. The latter is an indicator of complex patterns in the measurements, while the former quantifies the capacity of a space form to accommodate a set of measurements with a specific ordinal spread profile. We prove that the ordinal capacity of a space form is related to its dimension and the sign of its curvature. This leads to a lower bound on the Euclidean and spherical embedding dimension of what we term similarity graphs. More importantly, we show that the statistical behavior of the ordinal spread random variables defined on a similarity graph can be used to identify its underlying space form. We support our theoretical claims with experiments on weighted trees, single-cell RNA expression data and spherical cartographic measurements.

Differential privacy (DP) provides a robust model to achieve privacy guarantees for released information. We examine the protection potency of sanitized multi-dimensional frequency distributions via DP randomization mechanisms against homogeneity attack (HA). HA allows adversaries to obtain the exact values on sensitive attributes for their targets without having to identify them from the released data. We propose measures for disclosure risk from HA and derive closed-form relationships between the privacy loss parameters in DP and the disclosure risk from HA. The availability of the closed-form relationships assists understanding the abstract concepts of DP and privacy loss parameters by putting them in the context of a concrete privacy attack and offers a perspective for choosing privacy loss parameters when employing DP mechanisms in information sanitization and release in practice. We apply the closed-form mathematical relationships in real-life datasets to demonstrate the assessment of disclosure risk due to HA on differentially private sanitized frequency distributions at various privacy loss parameters.

Automatic detection of toxic language plays an essential role in protecting social media users, especially minority groups, from verbal abuse. However, biases toward some attributes, including gender, race, and dialect, exist in most training datasets for toxicity detection. The biases make the learned models unfair and can even exacerbate the marginalization of people. Considering that current debiasing methods for general natural language understanding tasks cannot effectively mitigate the biases in the toxicity detectors, we propose to use invariant rationalization (InvRat), a game-theoretic framework consisting of a rationale generator and a predictor, to rule out the spurious correlation of certain syntactic patterns (e.g., identity mentions, dialect) to toxicity labels. We empirically show that our method yields lower false positive rate in both lexical and dialectal attributes than previous debiasing methods.

A central goal of machine learning is to learn robust representations that capture the causal relationship between inputs features and output labels. However, minimizing empirical risk over finite or biased datasets often results in models latching on to spurious correlations between the training input/output pairs that are not fundamental to the problem at hand. In this paper, we define and analyze robust and spurious representations using the information-theoretic concept of minimal sufficient statistics. We prove that even when there is only bias of the input distribution (i.e. covariate shift), models can still pick up spurious features from their training data. Group distributionally robust optimization (DRO) provides an effective tool to alleviate covariate shift by minimizing the worst-case training loss over a set of pre-defined groups. Inspired by our analysis, we demonstrate that group DRO can fail when groups do not directly account for various spurious correlations that occur in the data. To address this, we further propose to minimize the worst-case losses over a more flexible set of distributions that are defined on the joint distribution of groups and instances, instead of treating each group as a whole at optimization time. Through extensive experiments on one image and two language tasks, we show that our model is significantly more robust than comparable baselines under various partitions. Our code is available at //github.com/violet-zct/group-conditional-DRO.

Many supervised learning problems involve high-dimensional data such as images, text, or graphs. In order to make efficient use of data, it is often useful to leverage certain geometric priors in the problem at hand, such as invariance to translations, permutation subgroups, or stability to small deformations. We study the sample complexity of learning problems where the target function presents such invariance and stability properties, by considering spherical harmonic decompositions of such functions on the sphere. We provide non-parametric rates of convergence for kernel methods, and show improvements in sample complexity by a factor equal to the size of the group when using an invariant kernel over the group, compared to the corresponding non-invariant kernel. These improvements are valid when the sample size is large enough, with an asymptotic behavior that depends on spectral properties of the group. Finally, these gains are extended beyond invariance groups to also cover geometric stability to small deformations, modeled here as subsets (not necessarily subgroups) of permutations.

Historically, to bound the mean for small sample sizes, practitioners have had to choose between using methods with unrealistic assumptions about the unknown distribution (e.g., Gaussianity) and methods like Hoeffding's inequality that use weaker assumptions but produce much looser (wider) intervals. In 1969, Anderson (1969) proposed a mean confidence interval strictly better than or equal to Hoeffding's whose only assumption is that the distribution's support is contained in an interval $[a,b]$. For the first time since then, we present a new family of bounds that compares favorably to Anderson's. We prove that each bound in the family has {\em guaranteed coverage}, i.e., it holds with probability at least $1-\alpha$ for all distributions on an interval $[a,b]$. Furthermore, one of the bounds is tighter than or equal to Anderson's for all samples. In simulations, we show that for many distributions, the gain over Anderson's bound is substantial.

Machine learning models often use spurious patterns such as "relying on the presence of a person to detect a tennis racket," which do not generalize. In this work, we present an end-to-end pipeline for identifying and mitigating spurious patterns for image classifiers. We start by finding patterns such as "the model's prediction for tennis racket changes 63% of the time if we hide the people." Then, if a pattern is spurious, we mitigate it via a novel form of data augmentation. We demonstrate that this approach identifies a diverse set of spurious patterns and that it mitigates them by producing a model that is both more accurate on a distribution where the spurious pattern is not helpful and more robust to distribution shift.

Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.

Graph Convolutional Networks (GCNs) have proved to be a most powerful architecture in aggregating local neighborhood information for individual graph nodes. Low-rank proximities and node features are successfully leveraged in existing GCNs, however, attributes that graph links may carry are commonly ignored, as almost all of these models simplify graph links into binary or scalar values describing node connectedness. In our paper instead, links are reverted to hypostatic relationships between entities with descriptional attributes. We propose GCN-LASE (GCN with Link Attributes and Sampling Estimation), a novel GCN model taking both node and link attributes as inputs. To adequately captures the interactions between link and node attributes, their tensor product is used as neighbor features, based on which we define several graph kernels and further develop according architectures for LASE. Besides, to accelerate the training process, the sum of features in entire neighborhoods are estimated through Monte Carlo method, with novel sampling strategies designed for LASE to minimize the estimation variance. Our experiments show that LASE outperforms strong baselines over various graph datasets, and further experiments corroborate the informativeness of link attributes and our model's ability of adequately leveraging them.

Clustering is an essential data mining tool that aims to discover inherent cluster structure in data. For most applications, applying clustering is only appropriate when cluster structure is present. As such, the study of clusterability, which evaluates whether data possesses such structure, is an integral part of cluster analysis. However, methods for evaluating clusterability vary radically, making it challenging to select a suitable measure. In this paper, we perform an extensive comparison of measures of clusterability and provide guidelines that clustering users can reference to select suitable measures for their applications.

北京阿比特科技有限公司