In a recently developed variational discretization scheme for second order initial value problems ( J. Comput. Phys. 498, 112652 (2024) ), it was shown that the Noether charge associated with time translation symmetry is exactly preserved in the interior of the simulated domain. The obtained solution also fulfils the naively discretized equations of motions inside the domain, except for the last two grid points. Here we provide an explanation for the deviations at the boundary as stemming from the Lagrange multipliers used to implement initial and connection conditions. We show explicitly that the Noether charge including the boundary corrections is exactly preserved at its continuum value over the whole simulation domain, including the boundary points.
We prove a stability estimate, in a suitable expected value, of the $1$-Wasserstein distance between the solution of the continuity equation under a Sobolev velocity field and a measure obtained by pushing forward Dirac deltas whose centers belong to a partition of the domain by a (sort of) explicit forward Euler method. The main tool is a $L^\infty_t (L^p_x)$ estimate on the difference between the regular Lagrangian flow of the velocity field and an explicitly constructed approximation of such flow. Although our result only gives estimates in expected value, it has the advantage of being easily parallelizable and of not relying on any particular structure on the mesh. At the end, we also provide estimates with a logarithmic Wasserstein distance, already used in other works on this particular problem.
We present and analyze a new finite volume scheme of Gudonov-type for a nonlinear scalar conservation law whose flux function has a discontinuous coefficient due to time-dependent changes in its sign along a Lipschitz continuous curve.
Input-output conformance simulation (iocos) has been proposed by Gregorio-Rodr\'iguez, Llana and Mart\'inez-Torres as a simulation-based behavioural preorder underlying model-based testing. This relation is inspired by Tretmans' classic ioco relation, but has better worst-case complexity than ioco and supports stepwise refinement. The goal of this paper is to develop the theory of iocos by studying logical characterisations of this relation, rule formats for it and its compositionality. More specifically, this article presents characterisations of iocos in terms of modal logics and compares them with an existing logical characterisation for ioco proposed by Beohar and Mousavi. It also offers a characteristic-formula construction for iocos over finite processes in an extension of the proposed modal logics with greatest fixed points. A precongruence rule format for iocos and a rule format ensuring that operations take quiescence properly into account are also given. Both rule formats are based on the GSOS format by Bloom, Istrail and Meyer. The general modal decomposition methodology of Fokkink and van Glabbeek is used to show how to check the satisfaction of properties expressed in the logic for iocos in a compositional way for operations specified by rules in the precongruence rule format for iocos .
In this paper, we consider the numerical approximation of a time-fractional stochastic Cahn--Hilliard equation driven by an additive fractionally integrated Gaussian noise. The model involves a Caputo fractional derivative in time of order $\alpha\in(0,1)$ and a fractional time-integral noise of order $\gamma\in[0,1]$. The numerical scheme approximates the model by a piecewise linear finite element method in space and a convolution quadrature in time (for both time-fractional operators), along with the $L^2$-projection for the noise. We carefully investigate the spatially semidiscrete and fully discrete schemes, and obtain strong convergence rates by using clever energy arguments. The temporal H\"older continuity property of the solution played a key role in the error analysis. Unlike the stochastic Allen--Cahn equation, the presence of the unbounded elliptic operator in front of the cubic nonlinearity in the underlying model adds complexity and challenges to the error analysis. To overcome these difficulties, several new techniques and error estimates are developed. The study concludes with numerical examples that validate the theoretical findings.
We investigate the multiplicity model with m values of some test statistic independently drawn from a mixture of no effect (null) and positive effect (alternative), where we seek to identify, the alternative test results with a controlled error rate. We are interested in the case where the alternatives are rare. A number of multiple testing procedures filter the set of ordered p-values in order to eliminate the nulls. Such an approach can only work if the p-values originating from the alternatives form one or several identifiable clusters. The Benjamini and Hochberg (BH) method, for example, assumes that this cluster occurs in a small interval $(0,\Delta)$ and filters out all or most of the ordered p-values $p_{(r)}$ above a linear threshold $s \times r$. In repeated applications this filter controls the false discovery rate via the slope s. We propose a new adaptive filter that deletes the p-values from regions of uniform distribution. In cases where a single cluster remains, the p-values in an interval are declared alternatives, with the mid-point and the length of the interval chosen by controlling the data-dependent FDR at a desired level.
Exact methods for exponentiation of matrices of dimension $N$ can be computationally expensive in terms of execution time ($N^{3}$) and memory requirements ($N^{2}$) not to mention numerical precision issues. A type of matrix often exponentiated in the sciences is the rate matrix. Here we explore five methods to exponentiate rate matrices some of which apply even more broadly to other matrix types. Three of the methods leverage a mathematical analogy between computing matrix elements of a matrix exponential and computing transition probabilities of a dynamical processes (technically a Markov jump process, MJP, typically simulated using Gillespie). In doing so, we identify a novel MJP-based method relying on restricting the number of ``trajectory" jumps based on the magnitude of the matrix elements with favorable computational scaling. We then discuss this method's downstream implications on mixing properties of Monte Carlo posterior samplers. We also benchmark two other methods of matrix exponentiation valid for any matrix (beyond rate matrices and, more generally, positive definite matrices) related to solving differential equations: Runge-Kutta integrators and Krylov subspace methods. Under conditions where both the largest matrix element and the number of non-vanishing elements scale linearly with $N$ -- reasonable conditions for rate matrices often exponentiated -- computational time scaling with the most competitive methods (Krylov and one of the MJP-based methods) reduces to $N^2$ with total memory requirements of $N$.
For a sequence of random structures with $n$-element domains over a relational signature, we define its first order (FO) complexity as a certain subset in the Banach space $\ell^{\infty}/c_0$. The well-known FO zero-one law and FO convergence law correspond to FO complexities equal to $\{0,1\}$ and a subset of $\mathbb{R}$, respectively. We present a hierarchy of FO complexity classes, introduce a stochastic FO reduction that allows to transfer complexity results between different random structures, and deduce using this tool several new logical limit laws for binomial random structures. Finally, we introduce a conditional distribution on graphs, subject to a FO sentence $\varphi$, that generalises certain well-known random graph models, show instances of this distribution for every complexity class, and prove that the set of all $\varphi$ validating 0--1 law is not recursively enumerable.
When applying Hamiltonian operator splitting methods for the time integration of multi-species Vlasov-Maxwell-Landau systems, the reliable and efficient numerical approximation of the Landau equation represents a fundamental component of the entire algorithm. Substantial computational issues arise from the treatment of the physically most relevant three-dimensional case with Coulomb interaction. This work is concerned with the introduction and numerical comparison of novel approaches for the evaluation of the Landau collision operator. In the spirit of collocation, common tools are the identification of fundamental integrals, series expansions of the integral kernel and the density function on the main part of the velocity domain, and interpolation as well as quadrature approximation nearby the singularity of the kernel. Focusing on the favourable choice of the Fourier spectral method, their practical implementation uses the reduction to basic integrals, fast Fourier techniques, and summations along certain directions. Moreover, an important observation is that a significant percentage of the overall computational effort can be transferred to precomputations which are independent of the density function. For the purpose of exposition and numerical validation, the cases of constant, regular, and singular integral kernels are distinguished, and the procedure is adapted accordingly to the increasing complexity of the problem. With regard to the time integration of the Landau equation, the most expedient approach is applied in such a manner that the conservation of mass is ensured.
The joint bidiagonalization (JBD) process iteratively reduces a matrix pair $\{A,L\}$ to two bidiagonal forms simultaneously, which can be used for computing a partial generalized singular value decomposition (GSVD) of $\{A,L\}$. The process has a nested inner-outer iteration structure, where the inner iteration usually can not be computed exactly. In this paper, we study the inaccurately computed inner iterations of JBD by first investigating influence of computational error of the inner iteration on the outer iteration, and then proposing a reorthogonalized JBD (rJBD) process to keep orthogonality of a part of Lanczos vectors. An error analysis of the rJBD is carried out to build up connections with Lanczos bidiagonalizations. The results are then used to investigate convergence and accuracy of the rJBD based GSVD computation. It is shown that the accuracy of computed GSVD components depend on the computing accuracy of inner iterations and condition number of $(A^T,L^T)^T$ while the convergence rate is not affected very much. For practical JBD based GSVD computations, our results can provide a guideline for choosing a proper computing accuracy of inner iterations in order to obtain approximate GSVD components with a desired accuracy. Numerical experiments are made to confirm our theoretical results.
The present article introduces, mathematically analyzes, and numerically validates a new weak Galerkin (WG) mixed-FEM based on Banach spaces for the stationary Navier--Stokes equation in pseudostress-velocity formulation. More precisely, a modified pseudostress tensor, called $ \boldsymbol{\sigma} $, depending on the pressure, and the diffusive and convective terms has been introduced in the proposed technique, and a dual-mixed variational formulation has been derived where the aforementioned pseudostress tensor and the velocity, are the main unknowns of the system, whereas the pressure is computed via a post-processing formula. Thus, it is sufficient to provide a WG space for the tensor variable and a space of piecewise polynomial vectors of total degree at most 'k' for the velocity. Moreover, in order to define the weak discrete bilinear form, whose continuous version involves the classical divergence operator, the weak divergence operator as a well-known alternative for the classical divergence operator in a suitable discrete subspace is proposed. The well-posedness of the numerical solution is proven using a fixed-point approach and the discrete versions of the Babu\v{s}ka-Brezzi theory and the Banach-Ne\v{c}as-Babu\v{s}ka theorem. Additionally, an a priori error estimate is derived for the proposed method. Finally, several numerical results illustrating the method's good performance and confirming the theoretical rates of convergence are presented.