亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of communicating a sequence of concepts, i.e., unknown and potentially stochastic maps, which can be observed only through examples, i.e., the mapping rules are unknown. The transmitter applies a learning algorithm to the available examples, and extracts knowledge from the data by optimizing a probability distribution over a set of models, i.e., known functions, which can better describe the observed data, and so potentially the underlying concepts. The transmitter then needs to communicate the learned models to a remote receiver through a rate-limited channel, to allow the receiver to decode the models that can describe the underlying sampled concepts as accurately as possible in their semantic space. After motivating our analysis, we propose the formal problem of communicating concepts, and provide its rate-distortion characterization, pointing out its connection with the concepts of empirical and strong coordination in a network. We also provide a bound for the distortion-rate function.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Analysis · TransAct · 相互獨立的 · state-of-the-art ·
2023 年 6 月 30 日

Smart contracts are programs that execute transactions involving independent parties and cryptocurrencies. As programs, smart contracts are susceptible to a wide range of errors and vulnerabilities. Such vulnerabilities can result in significant losses. Furthermore, by design, smart contract transactions are irreversible. This creates a need for methods to ensure the correctness and security of contracts pre-deployment. Recently there has been substantial research into such methods. The sheer volume of this research makes articulating state-of-the-art a substantial undertaking. To address this challenge, we present a systematic review of the literature. A key feature of our presentation is to factor out the relationship between vulnerabilities and methods through properties. Specifically, we enumerate and classify smart contract vulnerabilities and methods by the properties they address. The methods considered include static analysis as well as dynamic analysis methods and machine learning algorithms that analyze smart contracts before deployment. Several patterns about the strengths of different methods emerge through this classification process.

In fixed budget bandit identification, an algorithm sequentially observes samples from several distributions up to a given final time. It then answers a query about the set of distributions. A good algorithm will have a small probability of error. While that probability decreases exponentially with the final time, the best attainable rate is not known precisely for most identification tasks. We show that if a fixed budget task admits a complexity, defined as a lower bound on the probability of error which is attained by the same algorithm on all bandit problems, then that complexity is determined by the best non-adaptive sampling procedure for that problem. We show that there is no such complexity for several fixed budget identification tasks including Bernoulli best arm identification with two arms: there is no single algorithm that attains everywhere the best possible rate.

This paper investigates an intelligent reflecting surface (IRS) enabled multiuser integrated sensing and communications (ISAC) system, which consists of one multi-antenna base station (BS), one IRS, multiple single-antenna communication users (CUs), and one target at the non-line-of-sight (NLoS) region of the BS. The IRS is deployed to not only assist the communication from the BS to the CUs, but also enable the BS's NLoS target sensing based on the echo signals from the BS-IRS-target-IRS-BS link. We consider two types of targets, namely the extended and point targets, for which the BS aims to estimate the complete target response matrix and the target direction-of-arrival (DoA) with respect to the IRS, respectively. To provide full degrees of freedom for sensing, we consider that the BS sends dedicated sensing signals in addition to the communication signals. Accordingly, we model two types of CU receivers, namely Type-I and Type-II CU receivers, which do not have and have the capability of canceling the interference from the sensing signals, respectively. Under each setup, we jointly optimize the transmit beamforming at the BS and the reflective beamforming at the IRS to minimize the Cram\'er-Rao bound (CRB) for target estimation, subject to the minimum signal-to-interference-plus-noise ratio (SINR) constraints at the CUs and the maximum transmit power constraint at the BS. We present efficient algorithms to solve the highly non-convex SINR-constrained CRB minimization problems, by using the techniques of alternating optimization, semi-definite relaxation, and successive convex approximation. Numerical results show that the proposed design achieves lower estimation CRB than other benchmark schemes, and the sensing signal interference cancellation at Type-II CU receivers is beneficial when the number of CUs is greater than one.

Consider a mechanism that cannot observe how many players there are directly, but instead must rely on their self-reports to know how many are participating. Suppose the players can create new identities to report to the auctioneer at some cost $c$. The usual mechanism design paradigm is equivalent to implicitly assuming that $c$ is infinity for all players, while the usual Sybil attacks literature is that it is zero or finite for one player (the attacker) and infinity for everyone else (the 'honest' players). The false-name proof literature largely assumes the cost to be 0. We consider a model with variable costs that unifies these disparate streams. A paradigmatic normal form game can be extended into a Sybil game by having the action space by the product of the feasible set of identities to create action where each player chooses how many players to present as in the game and their actions in the original normal form game. A mechanism is (dominant) false-name proof if it is (dominant) incentive-compatible for all the players to self-report as at most one identity. We study mechanisms proposed in the literature motivated by settings where anonymity and self-identification are the norms, and show conditions under which they are not Sybil-proof. We characterize a class of dominant Sybil-proof mechanisms for reward sharing and show that they achieve the efficiency upper bound. We consider the extension when agents can credibly commit to the strategy of their sybils and show how this can break mechanisms that would otherwise be false-name proof.

Semantic communication, which focuses on conveying the meaning of information rather than exact bit reconstruction, has gained considerable attention in recent years. Meanwhile, reconfigurable intelligent surface (RIS) is a promising technology that can achieve high spectral and energy efficiency by dynamically reflecting incident signals through programmable passive components. In this paper, we put forth a semantic communication scheme aided by RIS. Using text transmission as an example, experimental results demonstrate that the RIS-assisted semantic communication system outperforms the point-to-point semantic communication system in terms of bilingual evaluation understudy (BLEU) scores in Rayleigh fading channels, especially at low signal-to-noise ratio (SNR) regimes. In addition, the RIS-assisted semantic communication system exhibits superior robustness against channel estimation errors compared to its point-to-point counterpart. RIS can improve performance as it provides extra line-of-sight (LoS) paths and enhances signal propagation conditions compared to point-to-point systems.

Phase noise (PN) is a major disturbance in MIMO systems, where the contribution of different oscillators at the transmitter and the receiver side may degrade the overall performance and offset the gains offered by MIMO techniques. This is even more crucial in the case of massive MIMO, since the number of PN sources may increase considerably. In this work, we propose an iterative receiver based on the application of the expectation-maximization algorithm. We consider a massive MIMO framework with a general association of oscillators to antennas, and include other channel disturbances like imperfect channel state information and Rician block fading. At each receiver iteration, given the information on the transmitted symbols, steepest descent is used to estimate the PN samples, with an optimized adaptive step size and a threshold-based stopping rule. The results obtained for several test cases show how the bit error rate and mean square error can benefit from the proposed phase-detection algorithm, even to the point of reaching the same performance as in the case where no PN is present{\color{black}, offering better results than a state-of-the-art alternative}. Further analysis of the results allow to draw some useful trade-offs respecting final performance and consumption of resources.

Backscatter communication is a hot candidate for future IoT systems. It offers the possibility for connectivity with tiny amounts of energy that can be easily obtained from energy harvesting. This is possible as backscatter devices do not actively transmit electromagnetic waves. Instead they only reflect existing electromagnetic waves by changing the antenna load. This fact leads to significant differences compared to classical communication wrt. the modulation schemes and achievable data rates. However, to our best knowledge nobody has so far systematically analyzed the achievable data rates and transmit ranges for different parameter configurations. Within this paper we derive theoretical bounds for backscatter communications based on classical information theory. We then use these bounds to analyze how different parameters - e.g. the distance, the frequency, or the transmit power - affect the achievable data rates. The bounds are derived for mono-static configuration, as well as for bi-static configurations. This allows feasibility analyses for different use-cases that are currently discussed in 3GPP and IEEE 802.

Community detection is an important problem when processing network data. Traditionally, this is done by exploiting the connections between nodes, but connections can be too sparse to detect communities in many real datasets. Node covariates can be used to assist community detection; see Binkiewicz et al. (2017); Weng and Feng (2022); Yan and Sarkar (2021); Yang et al. (2013). However, how to combine covariates with network connections is challenging, because covariates may be high-dimensional and inconsistent with community labels. To study the relationship between covariates and communities, we propose the degree corrected stochastic block model with node covariates (DCSBM-NC). It allows degree heterogeneity among communities and inconsistent labels between communities and covariates. Based on DCSBM-NC, we design the adjusted neighbor-covariate (ANC) data matrix, which leverages covariate information to assist community detection. We then propose the covariate-assisted spectral clustering on ratios of singular vectors (CA-SCORE) method on the ANC matrix. We prove that CA-SCORE successfully recovers community labels when 1) the network is relatively dense; 2) the covariate class labels match the community labels; 3) the data is a mixture of 1) and 2). CA-SCORE has good performance on synthetic and real datasets. The algorithm is implemented in the R(R Core Team (2021)) package CASCORE.

Artificial Intelligence (AI) is rapidly becoming integrated into military Command and Control (C2) systems as a strategic priority for many defence forces. The successful implementation of AI is promising to herald a significant leap in C2 agility through automation. However, realistic expectations need to be set on what AI can achieve in the foreseeable future. This paper will argue that AI could lead to a fragility trap, whereby the delegation of C2 functions to an AI could increase the fragility of C2, resulting in catastrophic strategic failures. This calls for a new framework for AI in C2 to avoid this trap. We will argue that antifragility along with agility should form the core design principles for AI-enabled C2 systems. This duality is termed Agile, Antifragile, AI-Enabled Command and Control (A3IC2). An A3IC2 system continuously improves its capacity to perform in the face of shocks and surprises through overcompensation from feedback during the C2 decision-making cycle. An A3IC2 system will not only be able to survive within a complex operational environment, it will also thrive, benefiting from the inevitable shocks and volatility of war.

In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.

北京阿比特科技有限公司