亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We extend the theory of locally checkable labeling problems (LCLs) from the classical LOCAL model to a number of other models that have been studied recently, including the quantum-LOCAL model, finitely-dependent processes, non-signaling model, dynamic-LOCAL model, and online-LOCAL model [e.g. STOC 2024, ICALP 2023]. First, we demonstrate the advantage that finitely-dependent processes have over the classical LOCAL model. We show that all LCL problems solvable with locality $O(\log^\star n)$ in the LOCAL model admit a finitely-dependent distribution (with constant locality). In particular, this gives a finitely-dependent coloring for regular trees, answering an open question by Holroyd [2023]. This also introduces a new formal barrier for understanding the distributed quantum advantage: it is not possible to exclude quantum advantage for any LCL in the $\Theta(\log^\star n)$ complexity class by using non-signaling arguments. Second, we put limits on the capabilities of all of these models. To this end, we introduce a model called randomized online-LOCAL, which is strong enough to simulate e.g. SLOCAL and dynamic-LOCAL, and we show that it is also strong enough to simulate any non-signaling distribution and hence any quantum-LOCAL algorithm. We prove the following result for rooted trees: if we can solve an LCL problem with locality $o(\log \log n)$ in the randomized online-LOCAL model, we can solve it with locality $O(\log^\star n)$ in the classical deterministic LOCAL model. Put together, these results show that in rooted trees the set of LCLs that can be solved with locality $O(\log^\star n)$ is the same across all these models: classical deterministic and randomized LOCAL, quantum-LOCAL, non-signaling model, dynamic-LOCAL, and deterministic and randomized online-LOCAL.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · SimPLe · 原點 · Processing(編程語言) · 論文 ·
2024 年 5 月 17 日

The Hawkes process is a model for counting the number of arrivals to a system which exhibits the self-exciting property - that one arrival creates a heightened chance of further arrivals in the near future. The model, and its generalizations, have been applied in a plethora of disparate domains, though two particularly developed applications are in seismology and in finance. As the original model is elegantly simple, generalizations have been proposed which: track marks for each arrival, are multivariate, have a spatial component, are driven by renewal processes, treat time as discrete, and so on. This paper creates a cohesive review of the traditional Hawkes model and the modern generalizations, providing details on their construction, simulation algorithms, and giving key references to the appropriate literature for a detailed treatment.

Triangle counting and sampling are two fundamental problems for streaming algorithms. Arguably, designing sampling algorithms is more challenging than their counting variants. It may be noted that triangle counting has received far greater attention in the literature than the sampling variant. In this work, we consider the problem of approximately sampling triangles in different models of streaming with the focus being on the adjacency list model. In this problem, the edges of a graph $G$ will arrive over a data stream. The goal is to design efficient streaming algorithms that can sample and output a triangle from a distribution, over the triangles in $G$, that is close to the uniform distribution over the triangles in $G$. The distance between distributions is measured in terms of $\ell_1$-distance. The main technical contribution of this paper is to design algorithms for this triangle sampling problem in the adjacency list model with the space complexities matching their counting variants. For the sake of completeness, we also show results on the vertex and edge arrival models.

This work establishes a novel link between the problem of PAC-learning high-dimensional graphical models and the task of (efficient) counting and sampling of graph structures, using an online learning framework. We observe that if we apply the exponentially weighted average (EWA) or randomized weighted majority (RWM) forecasters on a sequence of samples from a distribution P using the log loss function, the average regret incurred by the forecaster's predictions can be used to bound the expected KL divergence between P and the predictions. Known regret bounds for EWA and RWM then yield new sample complexity bounds for learning Bayes nets. Moreover, these algorithms can be made computationally efficient for several interesting classes of Bayes nets. Specifically, we give a new sample-optimal and polynomial time learning algorithm with respect to trees of unknown structure and the first polynomial sample and time algorithm for learning with respect to Bayes nets over a given chordal skeleton.

Traditionally, classical numerical schemes have been employed to solve partial differential equations (PDEs) using computational methods. Recently, neural network-based methods have emerged. Despite these advancements, neural network-based methods, such as physics-informed neural networks (PINNs) and neural operators, exhibit deficiencies in robustness and generalization. To address these issues, numerous studies have integrated classical numerical frameworks with machine learning techniques, incorporating neural networks into parts of traditional numerical methods. In this study, we focus on hyperbolic conservation laws by replacing traditional numerical fluxes with neural operators. To this end, we developed loss functions inspired by established numerical schemes related to conservation laws and approximated numerical fluxes using Fourier neural operators (FNOs). Our experiments demonstrated that our approach combines the strengths of both traditional numerical schemes and FNOs, outperforming standard FNO methods in several respects. For instance, we demonstrate that our method is robust, has resolution invariance, and is feasible as a data-driven method. In particular, our method can make continuous predictions over time and exhibits superior generalization capabilities with out-of-distribution (OOD) samples, which are challenges that existing neural operator methods encounter.

Decision diagrams (DDs) are powerful tools to represent effectively propositional formulas, which are largely used in many domains, in particular in formal verification and in knowledge compilation. Some forms of DDs (e.g., OBDDs, SDDs) are canonical, that is, (under given conditions on the atom list) they univocally represent equivalence classes of formulas. Given the limited expressiveness of propositional logic, a few attempts to leverage DDs to SMT level have been presented in the literature. Unfortunately, these techniques still suffer from some limitations: most procedures are theory-specific; some produce theory DDs (T-DDs) which do not univocally represent T-valid formulas or T-inconsistent formulas; none of these techniques provably produces theory-canonical T-DDs, which (under given conditions on the T-atom list) univocally represent T-equivalence classes of formulas. Also, these procedures are not easy to implement, and very few implementations are actually available. In this paper, we present a novel very-general technique to leverage DDs to SMT level, which has several advantages: it is very easy to implement on top of an AllSMT solver and a DD package, which are used as blackboxes; it works for every form of DDs and every theory, or combination thereof, supported by the AllSMT solver; it produces theory-canonical T-DDs if the propositional DD is canonical. We have implemented a prototype tool for both T-OBDDs and T-SDDs on top of OBDD and SDD packages and the MathSAT SMT solver. Some preliminary empirical evaluation supports the effectiveness of the approach.

The conventional probabilistic rounding error analysis in numerical linear algebra provides worst-case bounds with an associated failure probability, which can still be pessimistic. In this paper, we develop a new probabilistic rounding error analysis from a statistical perspective. By assuming both the data and the relative error are independent random variables, we derive the approximate closed-form expressions for the expectation and variance of the rounding errors in various key computational kernels. Our analytical expressions have three notable characteristics: they are statistical and do not involve a failure probability; they are sharper than other deterministic and probabilistic bounds, using mean square error as the metric; they are correct to all orders of unit roundoff and valid for any dimension. Furthermore, numerical experiments validate the accuracy of our derivations and demonstrate that our analytical expressions are generally at least two orders of magnitude tighter than alternative worst-case bounds, exemplified through the inner products. We also discuss a scenario involving inner products where the underlying assumptions are invalid, i.e., input data are dependent, rendering the analytical expressions inapplicable.

Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.

Knowledge graph (KG) embedding encodes the entities and relations from a KG into low-dimensional vector spaces to support various applications such as KG completion, question answering, and recommender systems. In real world, knowledge graphs (KGs) are dynamic and evolve over time with addition or deletion of triples. However, most existing models focus on embedding static KGs while neglecting dynamics. To adapt to the changes in a KG, these models need to be re-trained on the whole KG with a high time cost. In this paper, to tackle the aforementioned problem, we propose a new context-aware Dynamic Knowledge Graph Embedding (DKGE) method which supports the embedding learning in an online fashion. DKGE introduces two different representations (i.e., knowledge embedding and contextual element embedding) for each entity and each relation, in the joint modeling of entities and relations as well as their contexts, by employing two attentive graph convolutional networks, a gate strategy, and translation operations. This effectively helps limit the impacts of a KG update in certain regions, not in the entire graph, so that DKGE can rapidly acquire the updated KG embedding by a proposed online learning algorithm. Furthermore, DKGE can also learn KG embedding from scratch. Experiments on the tasks of link prediction and question answering in a dynamic environment demonstrate the effectiveness and efficiency of DKGE.

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司