亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite the impressive numerical performance of quasi-Newton and Anderson/nonlinear acceleration methods, their global convergence rates have remained elusive for over 50 years. This paper addresses this long-standing question by introducing a framework that derives novel and adaptive quasi-Newton or nonlinear/Anderson acceleration schemes. Under mild assumptions, the proposed iterative methods exhibit explicit, non-asymptotic convergence rates that blend those of gradient descent and Cubic Regularized Newton's method. Notably, these rates are achieved adaptively, as the method autonomously determines the optimal step size using a simple backtracking strategy. The proposed approach also includes an accelerated version that improves the convergence rate on convex functions. Numerical experiments demonstrate the efficiency of the proposed framework, even compared to a fine-tuned BFGS algorithm with line search.

相關內容

This paper is concerned with goal-oriented a posteriori error estimation for nonlinear functionals in the context of nonlinear variational problems solved with continuous Galerkin finite element discretizations. A two-level, or discrete, adjoint-based approach for error estimation is considered. The traditional method to derive an error estimate in this context requires linearizing both the nonlinear variational form and the nonlinear functional of interest which introduces linearization errors into the error estimate. In this paper, we investigate these linearization errors. In particular, we develop a novel discrete goal-oriented error estimate that accounts for traditionally neglected nonlinear terms at the expense of greater computational cost. We demonstrate how this error estimate can be used to drive mesh adaptivity. We show that accounting for linearization errors in the error estimate can improve its effectivity for several nonlinear model problems and quantities of interest. We also demonstrate that an adaptive strategy based on the newly proposed estimate can lead to more accurate approximations of the nonlinear functional with fewer degrees of freedom when compared to uniform refinement and traditional adjoint-based approaches.

For time-dependent PDEs, the numerical schemes can be rendered bound-preserving without losing conservation and accuracy, by a post processing procedure of solving a constrained minimization in each time step. Such a constrained optimization can be formulated as a nonsmooth convex minimization, which can be efficiently solved by first order optimization methods, if using the optimal algorithm parameters. By analyzing the asymptotic linear convergence rate of the generalized Douglas-Rachford splitting method, optimal algorithm parameters can be approximately expressed as a simple function of the number of out-of-bounds cells. We demonstrate the efficiency of this simple choice of algorithm parameters by applying such a limiter to cell averages of a discontinuous Galerkin scheme solving phase field equations for 3D demanding problems. Numerical tests on a sophisticated 3D Cahn-Hilliard-Navier-Stokes system indicate that the limiter is high order accurate, very efficient, and well-suited for large-scale simulations. For each time step, it takes at most $20$ iterations for the Douglas-Rachford splitting to enforce bounds and conservation up to the round-off error, for which the computational cost is at most $80N$ with $N$ being the total number of cells.

The Number needed to treat (NNT) is an efficacy index defined as the average number of patients needed to treat to attain one additional treatment benefit. In observational studies, specifically in epidemiology, the adequacy of the populationwise NNT is questionable since the exposed group characteristics may substantially differ from the unexposed. To address this issue, groupwise efficacy indices were defined: the Exposure Impact Number (EIN) for the exposed group and the Number Needed to Expose (NNE) for the unexposed. Each defined index answers a unique research question since it targets a unique sub-population. In observational studies, the group allocation is typically affected by confounders that might be unmeasured. The available estimation methods that rely either on randomization or the sufficiency of the measured covariates for confounding control will result in inconsistent estimators of the true NNT (EIN, NNE) in such settings. Using Rubin's potential outcomes framework, we explicitly define the NNT and its derived indices as causal contrasts. Next, we introduce a novel method that uses instrumental variables to estimate the three aforementioned indices in observational studies. We present two analytical examples and a corresponding simulation study. The simulation study illustrates that the novel estimators are consistent, unlike the previously available methods, and their confidence intervals meet the nominal coverage rates. Finally, a real-world data example of the effect of vitamin D deficiency on the mortality rate is presented.

A new variant of Newton's method for empirical risk minimization is studied, where at each iteration of the optimization algorithm, the gradient and Hessian of the objective function are replaced by robust estimators taken from existing literature on robust mean estimation for multivariate data. After proving a general theorem about the convergence of successive iterates to a small ball around the population-level minimizer, consequences of the theory in generalized linear models are studied when data are generated from Huber's epsilon-contamination model and/or heavytailed distributions. An algorithm for obtaining robust Newton directions based on the conjugate gradient method is also proposed, which may be more appropriate for high-dimensional settings, and conjectures about the convergence of the resulting algorithm are offered. Compared to robust gradient descent, the proposed algorithm enjoys the faster rates of convergence for successive iterates often achieved by second-order algorithms for convex problems, i.e., quadratic convergence in a neighborhood of the optimum, with a stepsize that may be chosen adaptively via backtracking linesearch.

Subgradient methods are the natural extension to the non-smooth case of the classical gradient descent for regular convex optimization problems. However, in general, they are characterized by slow convergence rates, and they require decreasing step-sizes to converge. In this paper we propose a subgradient method with constant step-size for composite convex objectives with $\ell_1$-regularization. If the smooth term is strongly convex, we can establish a linear convergence result for the function values. This fact relies on an accurate choice of the element of the subdifferential used for the update, and on proper actions adopted when non-differentiability regions are crossed. Then, we propose an accelerated version of the algorithm, based on conservative inertial dynamics and on an adaptive restart strategy, that is guaranteed to achieve a linear convergence rate in the strongly convex case. Finally, we test the performances of our algorithms on some strongly and non-strongly convex examples.

We design a novel algorithm for optimal transport by drawing from the entropic optimal transport, mirror descent and conjugate gradients literatures. Our algorithm is able to compute optimal transport costs with arbitrary accuracy without running into numerical stability issues. The algorithm is implemented efficiently on GPUs and is shown empirically to converge more quickly than traditional algorithms such as Sinkhorn's Algorithm both in terms of number of iterations and wall-clock time in many cases. We pay particular attention to the entropy of marginal distributions and show that high entropy marginals make for harder optimal transport problems, for which our algorithm is a good fit. We provide a careful ablation analysis with respect to algorithm and problem parameters, and present benchmarking over the MNIST dataset. The results suggest that our algorithm can be a useful addition to the practitioner's optimal transport toolkit. Our code is open-sourced at //github.com/adaptive-agents-lab/MDOT-PNCG .

Decentralized learning (DL) has recently employed local updates to reduce the communication cost for general non-convex optimization problems. Specifically, local updates require each node to perform multiple update steps on the parameters of the local model before communicating with others. However, most existing methods could be highly sensitive to data heterogeneity (i.e., non-iid data distribution) and adversely affected by the stochastic gradient noise. In this paper, we propose DSE-MVR to address these problems.Specifically, DSE-MVR introduces a dual-slow estimation strategy that utilizes the gradient tracking technique to estimate the global accumulated update direction for handling the data heterogeneity problem; also for stochastic noise, the method uses the mini-batch momentum-based variance-reduction technique.We theoretically prove that DSE-MVR can achieve optimal convergence results for general non-convex optimization in both iid and non-iid data distribution settings. In particular, the leading terms in the convergence rates derived by DSE-MVR are independent of the stochastic noise for large-batches or large partial average intervals (i.e., the number of local update steps). Further, we put forward DSE-SGD and theoretically justify the importance of the dual-slow estimation strategy in the data heterogeneity setting. Finally, we conduct extensive experiments to show the superiority of DSE-MVR against other state-of-the-art approaches.

We study the fundamental limits of matching pursuit, or the pure greedy algorithm, for approximating a target function by a sparse linear combination of elements from a dictionary. When the target function is contained in the variation space corresponding to the dictionary, many impressive works over the past few decades have obtained upper and lower bounds on the convergence rate of matching pursuit, but they do not match. The main contribution of this paper is to close this gap and obtain a sharp characterization of the performance of matching pursuit. We accomplish this by improving the existing lower bounds to match the best upper bound. Specifically, we construct a worst case dictionary which proves that the existing upper bound cannot be improved. It turns out that, unlike other greedy algorithm variants, the converge rate is suboptimal and is determined by the solution to a certain non-linear equation. This enables us to conclude that any amount of shrinkage improves matching pursuit in the worst case.

This paper studies online convex optimization with stochastic constraints. We propose a variant of the drift-plus-penalty algorithm that guarantees $O(\sqrt{T})$ expected regret and zero constraint violation, after a fixed number of iterations, which improves the vanilla drift-plus-penalty method with $O(\sqrt{T})$ constraint violation. Our algorithm is oblivious to the length of the time horizon $T$, in contrast to the vanilla drift-plus-penalty method. This is based on our novel drift lemma that provides time-varying bounds on the virtual queue drift and, as a result, leads to time-varying bounds on the expected virtual queue length. Moreover, we extend our framework to stochastic-constrained online convex optimization under two-point bandit feedback. We show that by adapting our algorithmic framework to the bandit feedback setting, we may still achieve $O(\sqrt{T})$ expected regret and zero constraint violation, improving upon the previous work for the case of identical constraint functions. Numerical results demonstrate our theoretical results.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

北京阿比特科技有限公司