This paper proposes a Bayes Net based Monte Carlo optimization for motion planning (BN-MCO). Primarily, we adjust the potential fields determined by goal and start constraints to progressively guide the sampled clusters toward the goal and start points. Then, we utilize the Gaussian mixed modal (GMM) to perform the Monte Carlo optimization, confronting these two non-convex potential fields. Moreover, KL divergence measures the bias between the true distribution determined by the fields and the proposed GMM, whose parameters are learned incrementally according to the manifold information of the bias. In this way, the Bayesian network consisting of sequential updated GMMs expands until the constraints are satisfied and the shortest path method can find a feasible path. Finally, we tune the key parameters and benchmark BN-MCO against the other 5 planners on LBR-iiwa in a bookshelf. The result shows the highest success rate and moderate solving efficiency of BN-MCO.
In this paper, we examine the research conducted in the field of Nepali Automatic Speech Recognition (ASR). The primary objective of this survey is to conduct a comprehensive review of the works on Nepali Automatic Speech Recognition Systems completed to date, explore the different datasets used, examine the technology utilized, and take account of the obstacles encountered in implementing the Nepali ASR system. In tandem with the global trends of ever-increasing research on speech recognition based research, the number of Nepalese ASR-related projects are also growing. Nevertheless, the investigation of language and acoustic models of the Nepali language has not received adequate attention compared to languages that possess ample resources. In this context, we provide a framework as well as directions for future investigations.
This paper introduces AutoGCN, a generic Neural Architecture Search (NAS) algorithm for Human Activity Recognition (HAR) using Graph Convolution Networks (GCNs). HAR has gained attention due to advances in deep learning, increased data availability, and enhanced computational capabilities. At the same time, GCNs have shown promising results in modeling relationships between body key points in a skeletal graph. While domain experts often craft dataset-specific GCN-based methods, their applicability beyond this specific context is severely limited. AutoGCN seeks to address this limitation by simultaneously searching for the ideal hyperparameters and architecture combination within a versatile search space using a reinforcement controller while balancing optimal exploration and exploitation behavior with a knowledge reservoir during the search process. We conduct extensive experiments on two large-scale datasets focused on skeleton-based action recognition to assess the proposed algorithm's performance. Our experimental results underscore the effectiveness of AutoGCN in constructing optimal GCN architectures for HAR, outperforming conventional NAS and GCN methods, as well as random search. These findings highlight the significance of a diverse search space and an expressive input representation to enhance the network performance and generalizability.
In this paper, we introduce a novel Distributed Markov Chain Monte Carlo (MCMC) inference method for the Bayesian Non-Parametric Latent Block Model (DisNPLBM), employing the Master/Worker architecture. Our non-parametric co-clustering algorithm divides observations and features into partitions using latent multivariate Gaussian block distributions. The workload on rows is evenly distributed among workers, who exclusively communicate with the master and not among themselves. DisNPLBM demonstrates its impact on cluster labeling accuracy and execution times through experimental results. Moreover, we present a real-use case applying our approach to co-cluster gene expression data. The code source is publicly available at //github.com/redakhoufache/Distributed-NPLBM.
Large Language Models (LLMs) have demonstrated remarkable versatility across various domains. To further advance LLMs, we propose 'SELF' (Self-Evolution with Language Feedback), a novel approach that enables LLMs to self-improve through self-reflection, akin to human learning processes. SELF initiates with a meta-skill learning process that equips the LLMs with capabilities for self-feedback and self-refinement. Subsequently, the model undergoes an iterative process of self-evolution. In each iteration, it utilizes an unlabeled dataset of instructions to generate initial responses. These responses are enhanced through self-feedback and self-refinement. The model is then fine-tuned using this enhanced data. The model undergoes progressive improvement through this iterative self-evolution process. Moreover, the SELF framework enables the model to apply self-refinement during inference, which further improves response quality. Our experiments in mathematics and general tasks demonstrate that SELF can enhance the capabilities of LLMs without human intervention. The SELF framework indicates a promising direction for the autonomous evolution of LLMs, transitioning them from passive information receivers to active participants in their development.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
In this paper, we focus on the self-supervised learning of visual correspondence using unlabeled videos in the wild. Our method simultaneously considers intra- and inter-video representation associations for reliable correspondence estimation. The intra-video learning transforms the image contents across frames within a single video via the frame pair-wise affinity. To obtain the discriminative representation for instance-level separation, we go beyond the intra-video analysis and construct the inter-video affinity to facilitate the contrastive transformation across different videos. By forcing the transformation consistency between intra- and inter-video levels, the fine-grained correspondence associations are well preserved and the instance-level feature discrimination is effectively reinforced. Our simple framework outperforms the recent self-supervised correspondence methods on a range of visual tasks including video object tracking (VOT), video object segmentation (VOS), pose keypoint tracking, etc. It is worth mentioning that our method also surpasses the fully-supervised affinity representation (e.g., ResNet) and performs competitively against the recent fully-supervised algorithms designed for the specific tasks (e.g., VOT and VOS).
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.
BERT, a pre-trained Transformer model, has achieved ground-breaking performance on multiple NLP tasks. In this paper, we describe BERTSUM, a simple variant of BERT, for extractive summarization. Our system is the state of the art on the CNN/Dailymail dataset, outperforming the previous best-performed system by 1.65 on ROUGE-L. The codes to reproduce our results are available at //github.com/nlpyang/BertSum
In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.