This paper investigates the shift in crowdsourcing towards self-managed enterprises of crowdworkers (SMECs), diverging from traditional platform-controlled models. It reviews the literature to understand the foundational aspects of this shift, focusing on identifying key factors that may explain the rise of SMECs, particularly concerning power dynamics and tensions between Online Labor Platforms (OLPs) and crowdworkers. The study aims to guide future research and inform policy and platform development, emphasizing the importance of fair labor practices in this evolving landscape.
Large Language Models have demonstrated unparalleled effectiveness in various NLP tasks, and integrating LLMs with automatic speech recognition is becoming a mainstream paradigm. Building upon this momentum, our research delves into an indepth examination of this paradigm on a large opensource Chinese dataset. Specifically, our research aims to evaluate the impact of various configurations of speech encoders, LLMs, and projector modules in the context of the speech foundation encoderLLM ASR paradigm. Furthermore, we introduce a threestage training approach, expressly developed to enhance the model's ability to align auditory and textual information. The implementation of this approach, alongside the strategic integration of ASR components, enabled us to achieve the SOTA performance on the AISHELL1, TestNet, and TestMeeting test sets. Our analysis presents an empirical foundation for future research in LLMbased ASR systems and offers insights into optimizing performance using Chinese datasets. We will publicly release all scripts used for data preparation, training, inference, and scoring, as well as pretrained models and training logs to promote reproducible research.
In this paper, we investigate the security implications of virtualized and software-based Open Radio Access Network (RAN) systems, specifically focusing on the architecture proposed by the O-RAN ALLIANCE and O-Cloud deployments based on the O-RAN Software Community (OSC) stack and infrastructure. Our key findings are based on a thorough security assessment and static scanning of the OSC Near Real-Time RAN Intelligent Controller (RIC) cluster. We highlight the presence of potential vulnerabilities and misconfigurations in the Kubernetes infrastructure supporting the RIC, also due to the usage of outdated versions of software packages, and provide an estimation of their criticality using various deployment auditing frameworks (e.g., MITRE ATT&CK and the NSA CISA). In addition, we propose methodologies to minimize these issues and harden the Open RAN virtualization infrastructure. These encompass the integration of security evaluation methods into the deployment process, implementing deployment hardening measures, and employing policy-based control for RAN components. We emphasize the need to address the problems found in order to improve the overall security of virtualized Open RAN systems.
Unmanned Aerial Vehicles (UAVs) have emerged as a transformative technology across diverse sectors, offering adaptable solutions to complex challenges in both military and civilian domains. Their expanding capabilities present a platform for further advancement by integrating cutting-edge computational tools like Artificial Intelligence (AI) and Machine Learning (ML) algorithms. These advancements have significantly impacted various facets of human life, fostering an era of unparalleled efficiency and convenience. Large Language Models (LLMs), a key component of AI, exhibit remarkable learning and adaptation capabilities within deployed environments, demonstrating an evolving form of intelligence with the potential to approach human-level proficiency. This work explores the significant potential of integrating UAVs and LLMs to propel the development of autonomous systems. We comprehensively review LLM architectures, evaluating their suitability for UAV integration. Additionally, we summarize the state-of-the-art LLM-based UAV architectures and identify novel opportunities for LLM embedding within UAV frameworks. Notably, we focus on leveraging LLMs to refine data analysis and decision-making processes, specifically for enhanced spectral sensing and sharing in UAV applications. Furthermore, we investigate how LLM integration expands the scope of existing UAV applications, enabling autonomous data processing, improved decision-making, and faster response times in emergency scenarios like disaster response and network restoration. Finally, we highlight crucial areas for future research that are critical for facilitating the effective integration of LLMs and UAVs.
Reconfigurable holographic surfaces (RHSs) constitute a promising technique of supporting energy-efficient communications. In this paper, we formulate the energy efficiency maximization problem of the switch-controlled RHS-aided beamforming architecture by alternately optimizing the holographic beamformer at the RHS, the digital beamformer, the total transmit power and the power sharing ratio of each user. Specifically, to deal with this challenging non-convex optimization problem, we decouple it into three sub-problems. Firstly, the coefficients of RHS elements responsible for the holographic beamformer are optimized to maximize the sum of the eigen-channel gains of all users by our proposed low-complexity eigen-decomposition (ED) method. Then, the digital beamformer is designed by the singular value decomposition (SVD) method to support multi-user information transfer. Finally, the total transmit power and the power sharing ratio are alternately optimized, while considering the effect of transceiver hardware impairments (HWI). We theoretically derive the spectral efficiency and energy efficiency performance upper bound for the RHS-based beamforming architectures in the presence of HWIs. Our simulation results show that the switch-controlled RHS-aided beamforming architecture achieves higher energy efficiency than the conventional fully digital beamformer and the hybrid beamformer based on phase shift arrays (PSA). Moreover, considering the effect of HWI in the beamforming design can bring about further energy efficiency enhancements.
Large language models appear quite creative, often performing on par with the average human on creative tasks. However, research on LLM creativity has focused solely on \textit{products}, with little attention on the creative \textit{process}. Process analyses of human creativity often require hand-coded categories or exploit response times, which do not apply to LLMs. We provide an automated method to characterise how humans and LLMs explore semantic spaces on the Alternate Uses Task, and contrast with behaviour in a Verbal Fluency Task. We use sentence embeddings to identify response categories and compute semantic similarities, which we use to generate jump profiles. Our results corroborate earlier work in humans reporting both persistent (deep search in few semantic spaces) and flexible (broad search across multiple semantic spaces) pathways to creativity, where both pathways lead to similar creativity scores. LLMs were found to be biased towards either persistent or flexible paths, that varied across tasks. Though LLMs as a population match human profiles, their relationship with creativity is different, where the more flexible models score higher on creativity. Our dataset and scripts are available on \href{//github.com/surabhisnath/Creative_Process}{GitHub}.
With the rapid development of LLMs, it is natural to ask how to harness their capabilities efficiently. In this paper, we explore whether it is feasible to direct each input query to a single most suitable LLM. To this end, we propose LLM routing for challenging reasoning tasks. Our extensive experiments suggest that such routing shows promise but is not feasible in all scenarios, so more robust approaches should be investigated to fill this gap.
This paper explores the intricate relationship between capitalism, racial injustice, and artificial intelligence (AI), arguing that AI acts as a contemporary vehicle for age-old forms of exploitation. By linking historical patterns of racial and economic oppression with current AI practices, this study illustrates how modern technology perpetuates and deepens societal inequalities. It specifically examines how AI is implicated in the exploitation of marginalized communities through underpaid labor in the gig economy, the perpetuation of biases in algorithmic decision-making, and the reinforcement of systemic barriers that prevent these groups from benefiting equitably from technological advances. Furthermore, the paper discusses the role of AI in extending and intensifying the social, economic, and psychological burdens faced by these communities, highlighting the problematic use of AI in surveillance, law enforcement, and mental health contexts. The analysis concludes with a call for transformative changes in how AI is developed and deployed. Advocating for a reevaluation of the values driving AI innovation, the paper promotes an approach that integrates social justice and equity into the core of technological design and policy. This shift is crucial for ensuring that AI serves as a tool for societal improvement, fostering empowerment and healing rather than deepening existing divides.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Large knowledge graphs often grow to store temporal facts that model the dynamic relations or interactions of entities along the timeline. Since such temporal knowledge graphs often suffer from incompleteness, it is important to develop time-aware representation learning models that help to infer the missing temporal facts. While the temporal facts are typically evolving, it is observed that many facts often show a repeated pattern along the timeline, such as economic crises and diplomatic activities. This observation indicates that a model could potentially learn much from the known facts appeared in history. To this end, we propose a new representation learning model for temporal knowledge graphs, namely CyGNet, based on a novel timeaware copy-generation mechanism. CyGNet is not only able to predict future facts from the whole entity vocabulary, but also capable of identifying facts with repetition and accordingly predicting such future facts with reference to the known facts in the past. We evaluate the proposed method on the knowledge graph completion task using five benchmark datasets. Extensive experiments demonstrate the effectiveness of CyGNet for predicting future facts with repetition as well as de novo fact prediction.
This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from one graph to another. Our source codes are publicly available at: //github.com/balcilar/Spectral-Designed-Graph-Convolutions