亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We design a Universal Automatic Elbow Detector (UAED) for deciding the effective number of components in model selection problems. The relationship with the information criteria widely employed in the literature is also discussed. The proposed UAED does not require the knowledge of a likelihood function and can be easily applied in diverse applications, such as regression and classification, feature and/or order selection, clustering, and dimension reduction. Several experiments involving synthetic and real data show the advantages of the proposed scheme with benchmark techniques in the literature.

相關內容

The chain graph model admits both undirected and directed edges in one graph, where symmetric conditional dependencies are encoded via undirected edges and asymmetric causal relations are encoded via directed edges. Though frequently encountered in practice, the chain graph model has been largely under investigated in literature, possibly due to the lack of identifiability conditions between undirected and directed edges. In this paper, we first establish a set of novel identifiability conditions for the Gaussian chain graph model, exploiting a low rank plus sparse decomposition of the precision matrix. Further, an efficient learning algorithm is built upon the identifiability conditions to fully recover the chain graph structure. Theoretical analysis on the proposed method is conducted, assuring its asymptotic consistency in recovering the exact chain graph structure. The advantage of the proposed method is also supported by numerical experiments on both simulated examples and a real application on the Standard & Poor 500 index data.

Large Language Models (LLMs) have the ability to solve a variety of tasks, such as text summarization and mathematical questions, just out of the box, but they are often trained with a single task in mind. Due to high computational costs, the current trend is to use prompt instruction tuning to better adjust monolithic, pretrained LLMs for new -- but often individual -- downstream tasks. Thus, how one would expand prompt tuning to handle -- concomitantly -- heterogeneous tasks and data distributions is a widely open question. To address this gap, we suggest the use of \emph{Mixture of Prompts}, or MoPs, associated with smart gating functionality: the latter -- whose design is one of the contributions of this paper -- can identify relevant skills embedded in different groups of prompts and dynamically assign combined experts (i.e., collection of prompts), based on the target task. Additionally, MoPs are empirically agnostic to any model compression technique applied -- for efficiency reasons -- as well as instruction data source and task composition. In practice, MoPs can simultaneously mitigate prompt training "interference" in multi-task, multi-source scenarios (e.g., task and data heterogeneity across sources), as well as possible implications from model approximations. As a highlight, MoPs manage to decrease final perplexity from $\sim20\%$ up to $\sim70\%$, as compared to baselines, in the federated scenario, and from $\sim 3\%$ up to $\sim30\%$ in the centralized scenario.

Cell-free (CF) massive multiple-input multiple-output (mMIMO) has been considered as a potential technology for Beyond 5G communication systems. However, the performance of CF mMIMO systems has not been well studied. Most existing analytical work on CF mMIMO systems is based on the expected signal-to-interference-plus-noise ratio (SINR). The statistical characteristics of the SINR, which is critical for emerging applications that focus on extreme events, have not been investigated. To address this issue, in this paper, we attempt to obtain the distribution of SINR in CF mMIMO systems. Considering a downlink CF mMIMO system with pilot contamination, we first give the closed-form expression of the SINR. Based on our analytical work on the two components of the SINR, i.e., desired signal and interference-plus-noise, we then derive the probability density function and cumulative distribution function of the SINR under maximum ratio transmission (MRT) and full-pilot zero-forcing (FZF) precoding, respectively. Subsequently, the closed-form expressions for two more sophisticated performance metrics, i.e., achievable rate and outage probability, can be obtained. Finally, we perform Monte Carlo simulations to validate our analytical work. The results demonstrate the effectiveness of the derived SINR distribution, achievable rate, and outage probability.

This paper studies MapReduce-based heterogeneous coded distributed computing (CDC) where, besides different computing capabilities at workers, input files to be accessed by computing jobs have nonuniform popularity. We propose a file placement strategy that can handle an arbitrary number of input files. Furthermore, we design a nested coded shuffling strategy that can efficiently manage the nonuniformity of file popularity to maximize the coded multicasting opportunity. We then formulate the joint optimization of the proposed file placement and nested shuffling design variables to optimize the proposed CDC scheme. To reduce the high computational complexity in solving the resulting mixed-integer linear programming (MILP) problem, we propose a simple two-file-group-based file placement approach to obtain an approximate solution. Numerical results show that the optimized CDC scheme outperforms other alternatives. Also, the proposed two-file-group-based approach achieves nearly the same performance as the conventional branch-and-cut method in solving the MILP problem but with substantially lower computational complexity that is scalable over the number of files and workers. For computing jobs with aggregate target functions that commonly appear in machine learning applications, we propose a heterogeneous compressed CDC (C-CDC) scheme to further improve the shuffling efficiency. The C-CDC scheme uses a local data aggregation technique to compress the data to be shuffled for the shuffling load reduction. We again optimize the proposed C-CDC scheme and explore the two-file-group-based low-complexity approach for an approximate solution. Numerical results show the proposed C-CDC scheme provides a considerable shuffling load reduction over the CDC scheme, and also, the two-file-group-based file placement approach maintains good performance.

Fully decentralized learning enables the distribution of learning resources and decision-making capabilities across multiple user devices or nodes, and is rapidly gaining popularity due to its privacy-preserving and decentralized nature. Importantly, this crowdsourcing of the learning process allows the system to continue functioning even if some nodes are affected or disconnected. In a disaster scenario, communication infrastructure and centralized systems may be disrupted or completely unavailable, hindering the possibility of carrying out standard centralized learning tasks in these settings. Thus, fully decentralized learning can help in this case. However, transitioning from centralized to peer-to-peer communications introduces a dependency between the learning process and the topology of the communication graph among nodes. In a disaster scenario, even peer-to-peer communications are susceptible to abrupt changes, such as devices running out of battery or getting disconnected from others due to their position. In this study, we investigate the effects of various disruptions to peer-to-peer communications on decentralized learning in a disaster setting. We examine the resilience of a decentralized learning process when a subset of devices drop from the process abruptly. To this end, we analyze the difference between losing devices holding data, i.e., potential knowledge, vs. devices contributing only to the graph connectivity, i.e., with no data. Our findings on a Barabasi-Albert graph topology, where training data is distributed across nodes in an IID fashion, indicate that the accuracy of the learning process is more affected by a loss of connectivity than by a loss of data. Nevertheless, the network remains relatively robust, and the learning process can achieve a good level of accuracy.

We introduce a novel modeling approach for time series imputation and forecasting, tailored to address the challenges often encountered in real-world data, such as irregular samples, missing data, or unaligned measurements from multiple sensors. Our method relies on a continuous-time-dependent model of the series' evolution dynamics. It leverages adaptations of conditional, implicit neural representations for sequential data. A modulation mechanism, driven by a meta-learning algorithm, allows adaptation to unseen samples and extrapolation beyond observed time-windows for long-term predictions. The model provides a highly flexible and unified framework for imputation and forecasting tasks across a wide range of challenging scenarios. It achieves state-of-the-art performance on classical benchmarks and outperforms alternative time-continuous models.

We investigate a novel modeling approach for end-to-end neural network training using hidden Markov models (HMM) where the transition probabilities between hidden states are modeled and learned explicitly. Most contemporary sequence-to-sequence models allow for from-scratch training by summing over all possible label segmentations in a given topology. In our approach there are explicit, learnable probabilities for transitions between segments as opposed to a blank label that implicitly encodes duration statistics. We implement a GPU-based forward-backward algorithm that enables the simultaneous training of label and transition probabilities. We investigate recognition results and additionally Viterbi alignments of our models. We find that while the transition model training does not improve recognition performance, it has a positive impact on the alignment quality. The generated alignments are shown to be viable targets in state-of-the-art Viterbi trainings.

Many software engineers develop, fine-tune, and deploy deep learning (DL) models. They use DL models in a variety of development frameworks and deploy to a range of runtime environments. In this diverse ecosystem, engineers use DL model converters to move models from frameworks to runtime environments. Conversion errors compromise model quality and disrupt deployment. However, failure modes and patterns of DL model converters are unknown. This knowledge gap adds engineering risk in DL interoperability technologies. In this paper, we conduct the first failure analysis on DL model converters. Specifically, we characterize failures in model converters associated with ONNX (Open Neural Network eXchange). We analyze failures in the ONNX converters for two major DL frameworks, PyTorch and TensorFlow. The symptoms, causes, and locations of failures are reported for N=200 issues. We also evaluate why models fail by converting 5,149 models, both real-world and synthetically generated instances. Through the course of our testing, we find 11 defects (5 new) across torch.onnx, tf2onnx, and the ONNXRuntime. We evaluated two hypotheses about the relationship between model operators and converter failures, falsifying one and with equivocal results on the other. We describe and note weaknesses in the current testing strategies for model converters. Our results motivate future research on making DL software simpler to maintain, extend, and validate.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司