亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Adversarial generative models, such as Generative Adversarial Networks (GANs), are widely applied for generating various types of data, i.e., images, text, and audio. Accordingly, its promising performance has led to the GAN-based adversarial attack methods in the white-box and black-box attack scenarios. The importance of transferable black-box attacks lies in their ability to be effective across different models and settings, more closely aligning with real-world applications. However, it remains challenging to retain the performance in terms of transferable adversarial examples for such methods. Meanwhile, we observe that some enhanced gradient-based transferable adversarial attack algorithms require prolonged time for adversarial sample generation. Thus, in this work, we propose a novel algorithm named GE-AdvGAN to enhance the transferability of adversarial samples whilst improving the algorithm's efficiency. The main approach is via optimising the training process of the generator parameters. With the functional and characteristic similarity analysis, we introduce a novel gradient editing (GE) mechanism and verify its feasibility in generating transferable samples on various models. Moreover, by exploring the frequency domain information to determine the gradient editing direction, GE-AdvGAN can generate highly transferable adversarial samples while minimizing the execution time in comparison to the state-of-the-art transferable adversarial attack algorithms. The performance of GE-AdvGAN is comprehensively evaluated by large-scale experiments on different datasets, which results demonstrate the superiority of our algorithm. The code for our algorithm is available at: //github.com/LMBTough/GE-advGAN

相關內容

對(dui)(dui)抗(kang)樣(yang)本(ben)(ben)由Christian Szegedy等人提出(chu),是(shi)指在數據(ju)(ju)集中通過(guo)故意(yi)添加(jia)細微(wei)的(de)(de)(de)(de)(de)(de)干(gan)擾(rao)(rao)(rao)所(suo)形成的(de)(de)(de)(de)(de)(de)輸(shu)(shu)(shu)入(ru)樣(yang)本(ben)(ben),導致模型(xing)以(yi)高置(zhi)信度(du)給出(chu)一個(ge)(ge)錯誤的(de)(de)(de)(de)(de)(de)輸(shu)(shu)(shu)出(chu)。在正(zheng)則化背景下,通過(guo)對(dui)(dui)抗(kang)訓練(lian)減少原有獨立同分布的(de)(de)(de)(de)(de)(de)測試集的(de)(de)(de)(de)(de)(de)錯誤率——在對(dui)(dui)抗(kang)擾(rao)(rao)(rao)動的(de)(de)(de)(de)(de)(de)訓練(lian)集樣(yang)本(ben)(ben)上訓練(lian)網(wang)絡(luo)。 對(dui)(dui)抗(kang)樣(yang)本(ben)(ben)是(shi)指通過(guo)在數據(ju)(ju)中故意(yi)添加(jia)細微(wei)的(de)(de)(de)(de)(de)(de)擾(rao)(rao)(rao)動生(sheng)成的(de)(de)(de)(de)(de)(de)一種輸(shu)(shu)(shu)入(ru)樣(yang)本(ben)(ben),能(neng)夠(gou)導致神經(jing)網(wang)絡(luo)模型(xing)給出(chu)一個(ge)(ge)錯誤的(de)(de)(de)(de)(de)(de)預測結(jie)果。 實質(zhi):對(dui)(dui)抗(kang)樣(yang)本(ben)(ben)是(shi)通過(guo)向輸(shu)(shu)(shu)入(ru)中加(jia)入(ru)人類難以(yi)察覺的(de)(de)(de)(de)(de)(de)擾(rao)(rao)(rao)動生(sheng)成,能(neng)夠(gou)改(gai)變(bian)人工(gong)智能(neng)模型(xing)的(de)(de)(de)(de)(de)(de)行(xing)為(wei)。其基本(ben)(ben)目(mu)標有兩個(ge)(ge),一是(shi)改(gai)變(bian)模型(xing)的(de)(de)(de)(de)(de)(de)預測結(jie)果;二(er)是(shi)加(jia)入(ru)到輸(shu)(shu)(shu)入(ru)中的(de)(de)(de)(de)(de)(de)擾(rao)(rao)(rao)動在人類看(kan)起來不(bu)足以(yi)引(yin)起模型(xing)預測結(jie)果的(de)(de)(de)(de)(de)(de)改(gai)變(bian),具有表面上的(de)(de)(de)(de)(de)(de)無害性。對(dui)(dui)抗(kang)樣(yang)本(ben)(ben)的(de)(de)(de)(de)(de)(de)相關研(yan)究對(dui)(dui)自動駕(jia)駛、智能(neng)家居等應用場景具有非常重(zhong)要的(de)(de)(de)(de)(de)(de)意(yi)義。

Bayesian inference for complex models with an intractable likelihood can be tackled using algorithms performing many calls to computer simulators. These approaches are collectively known as "simulation-based inference" (SBI). Recent SBI methods have made use of neural networks (NN) to provide approximate, yet expressive constructs for the unavailable likelihood function and the posterior distribution. However, they do not generally achieve an optimal trade-off between accuracy and computational demand. In this work, we propose an alternative that provides both approximations to the likelihood and the posterior distribution, using structured mixtures of probability distributions. Our approach produces accurate posterior inference when compared to state-of-the-art NN-based SBI methods, while exhibiting a much smaller computational footprint. We illustrate our results on several benchmark models from the SBI literature.

In Coevolving Latent Space Networks with Attractors (CLSNA) models, nodes in a latent space represent social actors, and edges indicate their dynamic interactions. Attractors are added at the latent level to capture the notion of attractive and repulsive forces between nodes, borrowing from dynamical systems theory. However, CLSNA reliance on MCMC estimation makes scaling difficult, and the requirement for nodes to be present throughout the study period limit practical applications. We address these issues by (i) introducing a Stochastic gradient descent (SGD) parameter estimation method, (ii) developing a novel approach for uncertainty quantification using SGD, and (iii) extending the model to allow nodes to join and leave over time. Simulation results show that our extensions result in little loss of accuracy compared to MCMC, but can scale to much larger networks. We apply our approach to the longitudinal social networks of members of US Congress on the social media platform X. Accounting for node dynamics overcomes selection bias in the network and uncovers uniquely and increasingly repulsive forces within the Republican Party.

The Bell regression model (BRM) is a statistical model that is often used in the analysis of count data that exhibits overdispersion. In this study, we propose a Bayesian analysis of the BRM and offer a new perspective on its application. Specifically, we introduce a G-prior distribution for Bayesian inference in BRM, in addition to a flat-normal prior distribution. To compare the performance of the proposed prior distributions, we conduct a simulation study and demonstrate that the G-prior distribution provides superior estimation results for the BRM. Furthermore, we apply the methodology to real data and compare the BRM to the Poisson regression model using various model selection criteria. Our results provide valuable insights into the use of Bayesian methods for estimation and inference of the BRM and highlight the importance of considering the choice of prior distribution in the analysis of count data.

Maximum entropy (Maxent) models are a class of statistical models that use the maximum entropy principle to estimate probability distributions from data. Due to the size of modern data sets, Maxent models need efficient optimization algorithms to scale well for big data applications. State-of-the-art algorithms for Maxent models, however, were not originally designed to handle big data sets; these algorithms either rely on technical devices that may yield unreliable numerical results, scale poorly, or require smoothness assumptions that many practical Maxent models lack. In this paper, we present novel optimization algorithms that overcome the shortcomings of state-of-the-art algorithms for training large-scale, non-smooth Maxent models. Our proposed first-order algorithms leverage the Kullback-Leibler divergence to train large-scale and non-smooth Maxent models efficiently. For Maxent models with discrete probability distribution of $n$ elements built from samples, each containing $m$ features, the stepsize parameters estimation and iterations in our algorithms scale on the order of $O(mn)$ operations and can be trivially parallelized. Moreover, the strong $\ell_{1}$ convexity of the Kullback--Leibler divergence allows for larger stepsize parameters, thereby speeding up the convergence rate of our algorithms. To illustrate the efficiency of our novel algorithms, we consider the problem of estimating probabilities of fire occurrences as a function of ecological features in the Western US MTBS-Interagency wildfire data set. Our numerical results show that our algorithms outperform the state of the arts by one order of magnitude and yield results that agree with physical models of wildfire occurrence and previous statistical analyses of wildfire drivers.

In decision-making, maxitive functions are used for worst-case and best-case evaluations. Maxitivity gives rise to a rich structure that is well-studied in the context of the pointwise order. In this article, we investigate maxitivity with respect to general preorders and provide a representation theorem for such functionals. The results are illustrated for different stochastic orders in the literature, including the usual stochastic order, the increasing convex/concave order, and the dispersive order.

Adversarial attacks can mislead automatic speech recognition (ASR) systems into predicting an arbitrary target text, thus posing a clear security threat. To prevent such attacks, we propose DistriBlock, an efficient detection strategy applicable to any ASR system that predicts a probability distribution over output tokens in each time step. We measure a set of characteristics of this distribution: the median, maximum, and minimum over the output probabilities, the entropy of the distribution, as well as the Kullback-Leibler and the Jensen-Shannon divergence with respect to the distributions of the subsequent time step. Then, by leveraging the characteristics observed for both benign and adversarial data, we apply binary classifiers, including simple threshold-based classification, ensembles of such classifiers, and neural networks. Through extensive analysis across different state-of-the-art ASR systems and language data sets, we demonstrate the supreme performance of this approach, with a mean area under the receiver operating characteristic for distinguishing target adversarial examples against clean and noisy data of 99% and 97%, respectively. To assess the robustness of our method, we show that adaptive adversarial examples that can circumvent DistriBlock are much noisier, which makes them easier to detect through filtering and creates another avenue for preserving the system's robustness.

Dual-path is a popular architecture for speech separation models (e.g. Sepformer) which splits long sequences into overlapping chunks for its intra- and inter-blocks that separately model intra-chunk local features and inter-chunk global relationships. However, it has been found that inter-blocks, which comprise half a dual-path model's parameters, contribute minimally to performance. Thus, we propose the Single-Path Global Modulation (SPGM) block to replace inter-blocks. SPGM is named after its structure consisting of a parameter-free global pooling module followed by a modulation module comprising only 2% of the model's total parameters. The SPGM block allows all transformer layers in the model to be dedicated to local feature modelling, making the overall model single-path. SPGM achieves 22.1 dB SI-SDRi on WSJ0-2Mix and 20.4 dB SI-SDRi on Libri2Mix, exceeding the performance of Sepformer by 0.5 dB and 0.3 dB respectively and matches the performance of recent SOTA models with up to 8 times fewer parameters. Model and weights are available at huggingface.co/yipjiaqi/spgm

This article is concerned with the multilevel Monte Carlo (MLMC) methods for approximating expectations of some functions of the solution to the Heston 3/2-model from mathematical finance, which takes values in $(0, \infty)$ and possesses superlinearly growing drift and diffusion coefficients. To discretize the SDE model, a new Milstein-type scheme is proposed to produce independent sample paths. The proposed scheme can be explicitly solved and is positivity-preserving unconditionally, i.e., for any time step-size $h>0$. This positivity-preserving property for large discretization time steps is particularly desirable in the MLMC setting. Furthermore, a mean-square convergence rate of order one is proved in the non-globally Lipschitz regime, which is not trivial, as the diffusion coefficient grows super-linearly. The obtained order-one convergence in turn promises the desired relevant variance of the multilevel estimator and justifies the optimal complexity $\mathcal{O}(\epsilon^{-2})$ for the MLMC approach, where $\epsilon > 0$ is the required target accuracy. Numerical experiments are finally reported to confirm the theoretical findings.

The sparsity-ranked lasso (SRL) has been developed for model selection and estimation in the presence of interactions and polynomials. The main tenet of the SRL is that an algorithm should be more skeptical of higher-order polynomials and interactions *a priori* compared to main effects, and hence the inclusion of these more complex terms should require a higher level of evidence. In time series, the same idea of ranked prior skepticism can be applied to the possibly seasonal autoregressive (AR) structure of the series during the model fitting process, becoming especially useful in settings with uncertain or multiple modes of seasonality. The SRL can naturally incorporate exogenous variables, with streamlined options for inference and/or feature selection. The fitting process is quick even for large series with a high-dimensional feature set. In this work, we discuss both the formulation of this procedure and the software we have developed for its implementation via the **fastTS** R package. We explore the performance of our SRL-based approach in a novel application involving the autoregressive modeling of hourly emergency room arrivals at the University of Iowa Hospitals and Clinics. We find that the SRL is considerably faster than its competitors, while producing more accurate predictions.

Multi-contrast (MC) Magnetic Resonance Imaging (MRI) reconstruction aims to incorporate a reference image of auxiliary modality to guide the reconstruction process of the target modality. Known MC reconstruction methods perform well with a fully sampled reference image, but usually exhibit inferior performance, compared to single-contrast (SC) methods, when the reference image is missing or of low quality. To address this issue, we propose DuDoUniNeXt, a unified dual-domain MRI reconstruction network that can accommodate to scenarios involving absent, low-quality, and high-quality reference images. DuDoUniNeXt adopts a hybrid backbone that combines CNN and ViT, enabling specific adjustment of image domain and k-space reconstruction. Specifically, an adaptive coarse-to-fine feature fusion module (AdaC2F) is devised to dynamically process the information from reference images of varying qualities. Besides, a partially shared shallow feature extractor (PaSS) is proposed, which uses shared and distinct parameters to handle consistent and discrepancy information among contrasts. Experimental results demonstrate that the proposed model surpasses state-of-the-art SC and MC models significantly. Ablation studies show the effectiveness of the proposed hybrid backbone, AdaC2F, PaSS, and the dual-domain unified learning scheme.

北京阿比特科技有限公司