亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

[Alecu et al.: Graph functionality, JCTB2021] define functionality, a graph parameter that generalizes graph degeneracy. They research the relation of functionality to many other graph parameters (tree-width, clique-width, VC-dimension, etc.). Extending their research, we prove logarithmic lower bound for functionality of random graph $G(n,p)$ for large range of $p$. Previously known graphs have functionality logarithmic in number of vertices. We show that for every graph $G$ on $n$ vertices we have $\mathrm{fun}(G) \le O(\sqrt{ n \log n})$ and we give a nearly matching $\Omega(\sqrt{n})$-lower bound provided by projective planes. Further, we study a related graph parameter \emph{symmetric difference}, the minimum of $|N(u) \Delta N(v)|$ over all pairs of vertices of the ``worst possible'' induced subgraph. It was observed by Alecu et al. that $\mathrm{fun}(G) \le \mathrm{sd}(G)+1$ for every graph $G$. We compare $\mathrm{fun}$ and $\mathrm{sd}$ for the class $\mathrm{INT}$ of interval graphs and $\mathrm{CA}$ of circular-arc graphs. We let $\mathrm{INT}_n$ denote the $n$-vertex interval graphs, similarly for $\mathrm{CA}_n$. Alecu et al. ask, whether $\mathrm{fun}(\mathrm{INT})$ is bounded. Dallard et al. answer this positively in a recent preprint. On the other hand, we show that $\Omega(\sqrt[4]{n}) \leq \mathrm{sd}(\mathrm{INT}_n) \leq O(\sqrt[3]{n})$. For the related class $\mathrm{CA}$ we show that $\mathrm{sd}(\mathrm{CA}_n) = \Theta(\sqrt{n})$. We propose a follow-up question: is $\mathrm{fun}(\mathrm{CA})$ bounded?

相關內容

Reduced order methods (ROMs) for the incompressible Navier--Stokes equations, based on proper orthogonal decomposition (POD), are studied that include snapshots which approach the temporal derivative of the velocity from a full order mixed finite element method (FOM). In addition, the set of snapshots contains the mean velocity of the FOM. Both the FOM and the POD-ROM are equipped with a grad-div stabilization. A velocity error analysis for this method can be found already in the literature. The present paper studies two different procedures to compute approximations to the pressure and proves error bounds for the pressure that are independent of inverse powers of the viscosity. Numerical studies support the analytic results and compare both methods.

A randomized scheme that succeeds with probability $1-\delta$ (for any $\delta>0$) has been devised to construct (1) an equidistributed $\epsilon$-cover of a compact Riemannian symmetric space $\mathbb M$ of dimension $d_{\mathbb M}$ and antipodal dimension $\bar{d}_{\mathbb M}$, and (2) an approximate $(\lambda_r,2)$-design, using $n(\epsilon,\delta)$-many Haar-random isometries of $\mathbb M$, where \begin{equation}n(\epsilon,\delta):=O_{\mathbb M}\left(d_{\mathbb M}\ln \left(\frac 1\epsilon\right)+\log\left(\frac 1\delta\right)\right)\,,\end{equation} and $\lambda_r$ is the $r$-th smallest eigenvalue of the Laplace-Beltrami operator on $\mathbb M$. The $\epsilon$-cover so-produced can be used to compute the integral of 1-Lipschitz functions within additive $\tilde O(\epsilon)$-error, as well as in comparing persistence homology computed from data cloud to that of a hypothetical data cloud sampled from the uniform measure.

We study the problem of finding connected components in the Adaptive Massively Parallel Computation (AMPC) model. We show that when we require the total space to be linear in the size of the input graph the problem can be solved in $O(\log^* n)$ rounds in forests (with high probability) and $2^{O(\log^* n)}$ expected rounds in general graphs. This improves upon an existing $O(\log \log_{m/n} n)$ round algorithm. For the case when the desired number of rounds is constant we show that both problems can be solved using $\Theta(m + n \log^{(k)} n)$ total space in expectation (in each round), where $k$ is an arbitrarily large constant and $\log^{(k)}$ is the $k$-th iterate of the $\log_2$ function. This improves upon existing algorithms requiring $\Omega(m + n \log n)$ total space.

A proper fusion of complex data is of interest to many researchers in diverse fields, including computational statistics, computational geometry, bioinformatics, machine learning, pattern recognition, quality management, engineering, statistics, finance, economics, etc. It plays a crucial role in: synthetic description of data processes or whole domains, creation of rule bases for approximate reasoning tasks, reaching consensus and selection of the optimal strategy in decision support systems, imputation of missing values, data deduplication and consolidation, record linkage across heterogeneous databases, and clustering. This open-access research monograph integrates the spread-out results from different domains using the methodology of the well-established classical aggregation framework, introduces researchers and practitioners to Aggregation 2.0, as well as points out the challenges and interesting directions for further research.

Graph neural networks generalize conventional neural networks to graph-structured data and have received widespread attention due to their impressive representation ability. In spite of the remarkable achievements, the performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry, especially for datasets with highly non-Euclidean latent anatomy. Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution, owing to its exponential growth property. In this survey, we comprehensively revisit the technical details of the current hyperbolic graph neural networks, unifying them into a general framework and summarizing the variants of each component. More importantly, we present various HGNN-related applications. Last, we also identify several challenges, which potentially serve as guidelines for further flourishing the achievements of graph learning in hyperbolic spaces.

Recommender system is one of the most important information services on today's Internet. Recently, graph neural networks have become the new state-of-the-art approach of recommender systems. In this survey, we conduct a comprehensive review of the literature in graph neural network-based recommender systems. We first introduce the background and the history of the development of both recommender systems and graph neural networks. For recommender systems, in general, there are four aspects for categorizing existing works: stage, scenario, objective, and application. For graph neural networks, the existing methods consist of two categories, spectral models and spatial ones. We then discuss the motivation of applying graph neural networks into recommender systems, mainly consisting of the high-order connectivity, the structural property of data, and the enhanced supervision signal. We then systematically analyze the challenges in graph construction, embedding propagation/aggregation, model optimization, and computation efficiency. Afterward and primarily, we provide a comprehensive overview of a multitude of existing works of graph neural network-based recommender systems, following the taxonomy above. Finally, we raise discussions on the open problems and promising future directions of this area. We summarize the representative papers along with their codes repositories in //github.com/tsinghua-fib-lab/GNN-Recommender-Systems.

In the last decade or so, we have witnessed deep learning reinvigorating the machine learning field. It has solved many problems in the domains of computer vision, speech recognition, natural language processing, and various other tasks with state-of-the-art performance. The data is generally represented in the Euclidean space in these domains. Various other domains conform to non-Euclidean space, for which graph is an ideal representation. Graphs are suitable for representing the dependencies and interrelationships between various entities. Traditionally, handcrafted features for graphs are incapable of providing the necessary inference for various tasks from this complex data representation. Recently, there is an emergence of employing various advances in deep learning to graph data-based tasks. This article provides a comprehensive survey of graph neural networks (GNNs) in each learning setting: supervised, unsupervised, semi-supervised, and self-supervised learning. Taxonomy of each graph based learning setting is provided with logical divisions of methods falling in the given learning setting. The approaches for each learning task are analyzed from both theoretical as well as empirical standpoints. Further, we provide general architecture guidelines for building GNNs. Various applications and benchmark datasets are also provided, along with open challenges still plaguing the general applicability of GNNs.

In order to overcome the expressive limitations of graph neural networks (GNNs), we propose the first method that exploits vector flows over graphs to develop globally consistent directional and asymmetric aggregation functions. We show that our directional graph networks (DGNs) generalize convolutional neural networks (CNNs) when applied on a grid. Whereas recent theoretical works focus on understanding local neighbourhoods, local structures and local isomorphism with no global information flow, our novel theoretical framework allows directional convolutional kernels in any graph. First, by defining a vector field in the graph, we develop a method of applying directional derivatives and smoothing by projecting node-specific messages into the field. Then we propose the use of the Laplacian eigenvectors as such vector field, and we show that the method generalizes CNNs on an n-dimensional grid, and is provably more discriminative than standard GNNs regarding the Weisfeiler-Lehman 1-WL test. Finally, we bring the power of CNN data augmentation to graphs by providing a means of doing reflection, rotation and distortion on the underlying directional field. We evaluate our method on different standard benchmarks and see a relative error reduction of 8\% on the CIFAR10 graph dataset and 11% to 32% on the molecular ZINC dataset. An important outcome of this work is that it enables to translate any physical or biological problems with intrinsic directional axes into a graph network formalism with an embedded directional field.

Meta-learning extracts the common knowledge acquired from learning different tasks and uses it for unseen tasks. It demonstrates a clear advantage on tasks that have insufficient training data, e.g., few-shot learning. In most meta-learning methods, tasks are implicitly related via the shared model or optimizer. In this paper, we show that a meta-learner that explicitly relates tasks on a graph describing the relations of their output dimensions (e.g., classes) can significantly improve the performance of few-shot learning. This type of graph is usually free or cheap to obtain but has rarely been explored in previous works. We study the prototype based few-shot classification, in which a prototype is generated for each class, such that the nearest neighbor search between the prototypes produces an accurate classification. We introduce "Gated Propagation Network (GPN)", which learns to propagate messages between prototypes of different classes on the graph, so that learning the prototype of each class benefits from the data of other related classes. In GPN, an attention mechanism is used for the aggregation of messages from neighboring classes, and a gate is deployed to choose between the aggregated messages and the message from the class itself. GPN is trained on a sequence of tasks from many-shot to few-shot generated by subgraph sampling. During training, it is able to reuse and update previously achieved prototypes from the memory in a life-long learning cycle. In experiments, we change the training-test discrepancy and test task generation settings for thorough evaluations. GPN outperforms recent meta-learning methods on two benchmark datasets in all studied cases.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司