亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problem of finding connected components in the Adaptive Massively Parallel Computation (AMPC) model. We show that when we require the total space to be linear in the size of the input graph the problem can be solved in $O(\log^* n)$ rounds in forests (with high probability) and $2^{O(\log^* n)}$ expected rounds in general graphs. This improves upon an existing $O(\log \log_{m/n} n)$ round algorithm. For the case when the desired number of rounds is constant we show that both problems can be solved using $\Theta(m + n \log^{(k)} n)$ total space in expectation (in each round), where $k$ is an arbitrarily large constant and $\log^{(k)}$ is the $k$-th iterate of the $\log_2$ function. This improves upon existing algorithms requiring $\Omega(m + n \log n)$ total space.

相關內容

Despite attractive theoretical guarantees and practical successes, Predictive Interval (PI) given by Conformal Prediction (CP) may not reflect the uncertainty of a given model. This limitation arises from CP methods using a constant correction for all test points, disregarding their individual uncertainties, to ensure coverage properties. To address this issue, we propose using a Quantile Regression Forest (QRF) to learn the distribution of nonconformity scores and utilizing the QRF's weights to assign more importance to samples with residuals similar to the test point. This approach results in PI lengths that are more aligned with the model's uncertainty. In addition, the weights learnt by the QRF provide a partition of the features space, allowing for more efficient computations and improved adaptiveness of the PI through groupwise conformalization. Our approach enjoys an assumption-free finite sample marginal and training-conditional coverage, and under suitable assumptions, it also ensures conditional coverage. Our methods work for any nonconformity score and are available as a Python package. We conduct experiments on simulated and real-world data that demonstrate significant improvements compared to existing methods.

Bayesian methods are commonly applied to solve image analysis problems such as noise-reduction, feature enhancement and object detection. A primary limitation of these approaches is the computational complexity due to the interdependence of neighboring pixels which limits the ability to perform full posterior sampling through Markov chain Monte Carlo (MCMC). To alleviate this problem, we develop a new posterior sampling method that is based on modeling the prior and likelihood in the space of the Fourier transform of the image. One advantage of Fourier-based methods is that many spatially correlated processes in image space can be represented via independent processes over Fourier space. A recent approach known as Bayesian Image Analysis in Fourier Space (or BIFS), has introduced parameter functions to describe prior expectations about image properties in Fourier space. To date BIFS has relied on Maximum a Posteriori (MAP) estimation for generating posterior estimates; providing just a single point estimate. The work presented here develops a posterior sampling approach for BIFS that can explore the full posterior distribution while continuing to take advantage of the independence modeling over Fourier space. As a result computational efficiency is improved over that for conventional Bayesian image analysis and mixing concerns that commonly have to be dealt with in high dimensional Markov chain Monte Carlo sampling problems are avoided. Implementation results and details are provided using simulated data.

Given $n$ samples of a function $f\colon D\to\mathbb C$ in random points drawn with respect to a measure $\varrho_S$ we develop theoretical analysis of the $L_2(D, \varrho_T)$-approximation error. For a parituclar choice of $\varrho_S$ depending on $\varrho_T$, it is known that the weighted least squares method from finite dimensional function spaces $V_m$, $\dim(V_m) = m < \infty$ has the same error as the best approximation in $V_m$ up to a multiplicative constant when given exact samples with logarithmic oversampling. If the source measure $\varrho_S$ and the target measure $\varrho_T$ differ we are in the domain adaptation setting, a subfield of transfer learning. We model the resulting deterioration of the error in our bounds. Further, for noisy samples, our bounds describe the bias-variance trade off depending on the dimension $m$ of the approximation space $V_m$. All results hold with high probability. For demonstration, we consider functions defined on the $d$-dimensional cube given in unifom random samples. We analyze polynomials, the half-period cosine, and a bounded orthonormal basis of the non-periodic Sobolev space $H_{\mathrm{mix}}^2$. Overcoming numerical issues of this $H_{\text{mix}}^2$ basis, this gives a novel stable approximation method with quadratic error decay. Numerical experiments indicate the applicability of our results.

Cluster randomized trials (CRTs) are studies where treatment is randomized at the cluster level but outcomes are typically collected at the individual level. When CRTs are employed in pragmatic settings, baseline population characteristics may moderate treatment effects, leading to what is known as heterogeneous treatment effects (HTEs). Pre-specified, hypothesis-driven HTE analyses in CRTs can enable an understanding of how interventions may impact subpopulation outcomes. While closed-form sample size formulas have recently been proposed, assuming known intracluster correlation coefficients (ICCs) for both the covariate and outcome, guidance on optimal cluster randomized designs to ensure maximum power with pre-specified HTE analyses has not yet been developed. We derive new design formulas to determine the cluster size and number of clusters to achieve the locally optimal design (LOD) that minimizes variance for estimating the HTE parameter given a budget constraint. Given the LODs are based on covariate and outcome-ICC values that are usually unknown, we further develop the maximin design for assessing HTE, identifying the combination of design resources that maximize the relative efficiency of the HTE analysis in the worst case scenario. In addition, given the analysis of the average treatment effect is often of primary interest, we also establish optimal designs to accommodate multiple objectives by combining considerations for studying both the average and heterogeneous treatment effects. We illustrate our methods using the context of the Kerala Diabetes Prevention Program CRT, and provide an R Shiny app to facilitate calculation of optimal designs under a wide range of design parameters.

Despite the impressive numerical performance of quasi-Newton and Anderson/nonlinear acceleration methods, their global convergence rates have remained elusive for over 50 years. This paper addresses this long-standing question by introducing a framework that derives novel and adaptive quasi-Newton or nonlinear/Anderson acceleration schemes. Under mild assumptions, the proposed iterative methods exhibit explicit, non-asymptotic convergence rates that blend those of gradient descent and Cubic Regularized Newton's method. Notably, these rates are achieved adaptively, as the method autonomously determines the optimal step size using a simple backtracking strategy. The proposed approach also includes an accelerated version that improves the convergence rate on convex functions. Numerical experiments demonstrate the efficiency of the proposed framework, even compared to a fine-tuned BFGS algorithm with line search.

We consider the problem of testing the fit of a discrete sample of items from many categories to the uniform distribution over the categories. As a class of alternative hypotheses, we consider the removal of an $\ell_p$ ball of radius $\epsilon$ around the uniform rate sequence for $p \leq 2$. We deliver a sharp characterization of the asymptotic minimax risk when $\epsilon \to 0$ as the number of samples and number of dimensions go to infinity, for testing based on the occurrences' histogram (number of absent categories, singletons, collisions, ...). For example, for $p=1$ and in the limit of a small expected number of samples $n$ compared to the number of categories $N$ (aka "sub-linear" regime), the minimax risk $R^*_\epsilon$ asymptotes to $2 \bar{\Phi}\left(n \epsilon^2/\sqrt{8N}\right) $, with $\bar{\Phi}(x)$ the normal survival function. Empirical studies over a range of problem parameters show that this estimate is accurate in finite samples, and that our test is significantly better than the chisquared test or a test that only uses collisions. Our analysis is based on the asymptotic normality of histogram ordinates, the equivalence between the minimax setting to a Bayesian one, and the reduction of a multi-dimensional optimization problem to a one-dimensional problem.

In this paper, we propose a new Bayesian inference method for a high-dimensional sparse factor model that allows both the factor dimensionality and the sparse structure of the loading matrix to be inferred. The novelty is to introduce a certain dependence between the sparsity level and the factor dimensionality, which leads to adaptive posterior concentration while keeping computational tractability. We show that the posterior distribution asymptotically concentrates on the true factor dimensionality, and more importantly, this posterior consistency is adaptive to the sparsity level of the true loading matrix and the noise variance. We also prove that the proposed Bayesian model attains the optimal detection rate of the factor dimensionality in a more general situation than those found in the literature. Moreover, we obtain a near-optimal posterior concentration rate of the covariance matrix. Numerical studies are conducted and show the superiority of the proposed method compared with other competitors.

Regression analysis under the assumption of monotonicity is a well-studied statistical problem and has been used in a wide range of applications. However, there remains a lack of a broadly applicable methodology that permits information borrowing, for efficiency gains, when jointly estimating multiple monotonic regression functions. We introduce such a methodology by extending the isotonic regression problem presented in the article "The isotonic regression problem and its dual" (Barlow and Brunk, 1972). The presented approach can be applied to both fixed and random designs and any number of explanatory variables (regressors). Our framework penalizes pairwise differences in the values (levels) of the monotonic function estimates, with the weight of penalty being determined based on a statistical test, which results in information being shared across data sets if similarities in the regression functions exist. Function estimates are subsequently derived using an iterative optimization routine that uses existing solution algorithms for the isotonic regression problem. Simulation studies for normally and binomially distributed response data illustrate that function estimates are consistently improved if similarities between functions exist, and are not oversmoothed otherwise. We further apply our methodology to analyse two public health data sets: neonatal mortality data for Porto Alegre, Brazil, and stroke patient data for North West England.

State-of-the-art parallel sorting algorithms for distributed-memory architectures are based on computing a balanced partitioning via sampling and histogramming. By finding samples that partition the sorted keys into evenly-sized chunks, these algorithms minimize the number of communication rounds required. Histogramming (computing positions of samples) guides sampling, enabling a decrease in the overall number of samples collected. We derive lower and upper bounds on the number of sampling/histogramming rounds required to compute a balanced partitioning. We improve on prior results to demonstrate that when using $p$ processors, $O(\log^* p)$ rounds with $O(p/\log^* p)$ samples per round suffice. We match that with a lower bound that shows that any algorithm with $O(p)$ samples per round requires at least $\Omega(\log^* p)$ rounds. Additionally, we prove the $\Omega(p \log p)$ samples lower bound for one round, thus proving that existing one round algorithms: sample sort, AMS sort and HSS have optimal sample size complexity. To derive the lower bound, we propose a hard randomized input distribution and apply classical results from the distribution theory of runs.

The task of computing homomorphisms between two finite relational structures $\mathcal{A}$ and $\mathcal{B}$ is a well-studied question with numerous applications. Since the set $\operatorname{Hom}(\mathcal{A},\mathcal{B})$ of all homomorphisms may be very large having a method of representing it in a succinct way, especially one which enables us to perform efficient enumeration and counting, could be extremely useful. One simple yet powerful way of doing so is to decompose $\operatorname{Hom}(\mathcal{A},\mathcal{B})$ using union and Cartesian product. Such data structures, called d-representations, have been introduced by Olteanu and Zavodny in the context of database theory. Their results also imply that if the treewidth of the left-hand side structure $\mathcal{A}$ is bounded, then a d-representation of polynomial size can be found in polynomial time. We show that for structures of bounded arity this is optimal: if the treewidth is unbounded then there are instances where the size of any d-representation is superpolynomial. Along the way we develop tools for proving lower bounds on the size of d-representations, in particular we define a notion of reduction suitable for this context and prove an almost tight lower bound on the size of d-representations of all $k$-cliques in a graph.

北京阿比特科技有限公司