亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Internet of Things (IoT) consistently generates vast amounts of data, sparking increasing concern over the protection of data privacy and the limitation of data misuse. Federated learning (FL) facilitates collaborative capabilities among multiple parties by sharing machine learning (ML) model parameters instead of raw user data, and it has recently gained significant attention for its potential in privacy preservation and learning efficiency enhancement. In this paper, we highlight the digital ethics concerns that arise when human-centric devices serve as clients in FL. More specifically, challenges of game dynamics, fairness, incentive, and continuity arise in FL due to differences in perspectives and objectives between clients and the server. We analyze these challenges and their solutions from the perspectives of both the client and the server, and through the viewpoints of centralized and decentralized FL. Finally, we explore the opportunities in FL for human-centric IoT as directions for future development.

相關內容

Various categories have been proposed as targets for the denotational semantics of higher-order probabilistic programming languages. One such proposal involves joint probability distributions (couplings) used in Bayesian statistical models with conditioning. In previous treatments, composition of joint measures was performed by disintegrating to obtain Markov kernels, composing the kernels, then reintegrating to obtain a joint measure. Disintegrations exist only under certain restrictions on the underlying spaces. In this paper we propose a category whose morphisms are joint finite measures in which composition is defined without reference to disintegration, allowing its application to a broader class of spaces. The category is symmetric monoidal with a pleasing symmetry in which the dagger structure is a simple transpose.

Quadruped robots have shown remarkable mobility on various terrains through reinforcement learning. Yet, in the presence of sparse footholds and risky terrains such as stepping stones and balance beams, which require precise foot placement to avoid falls, model-based approaches are often used. In this paper, we show that end-to-end reinforcement learning can also enable the robot to traverse risky terrains with dynamic motions. To this end, our approach involves training a generalist policy for agile locomotion on disorderly and sparse stepping stones before transferring its reusable knowledge to various more challenging terrains by finetuning specialist policies from it. Given that the robot needs to rapidly adapt its velocity on these terrains, we formulate the task as a navigation task instead of the commonly used velocity tracking which constrains the robot's behavior and propose an exploration strategy to overcome sparse rewards and achieve high robustness. We validate our proposed method through simulation and real-world experiments on an ANYmal-D robot achieving peak forward velocity of >= 2.5 m/s on sparse stepping stones and narrow balance beams. Video: youtu.be/Z5X0J8OH6z4

Defect detection plays a crucial role in infrared non-destructive testing systems, offering non-contact, safe, and efficient inspection capabilities. However, challenges such as low resolution, high noise, and uneven heating in infrared thermal images hinder comprehensive and accurate defect detection. In this study, we propose DefectSAM, a novel approach for segmenting defects on highly noisy thermal images based on the widely adopted model, Segment Anything (SAM)\cite{kirillov2023segany}. Harnessing the power of a meticulously curated dataset generated through labor-intensive lab experiments and valuable prompts from experienced experts, DefectSAM surpasses existing state-of-the-art segmentation algorithms and achieves significant improvements in defect detection rates. Notably, DefectSAM excels in detecting weaker and smaller defects on complex and irregular surfaces, reducing the occurrence of missed detections and providing more accurate defect size estimations. Experimental studies conducted on various materials have validated the effectiveness of our solutions in defect detection, which hold significant potential to expedite the evolution of defect detection tools, enabling enhanced inspection capabilities and accuracy in defect identification.

Recent observations have underscored a disparity between the inflated benchmark scores and the actual performance of LLMs, raising concerns about potential contamination of evaluation benchmarks. This issue is especially critical for closed-source models and certain open-source models where training data transparency is lacking. In this paper we study data contamination by proposing two methods tailored for both open-source and proprietary LLMs. We first introduce a retrieval-based system to explore potential overlaps between evaluation benchmarks and pretraining corpora. We further present a novel investigation protocol named \textbf{T}estset \textbf{S}lot Guessing (\textit{TS-Guessing}), applicable to both open and proprietary models. This approach entails masking a wrong answer in a multiple-choice question and prompting the model to fill in the gap. Additionally, it involves obscuring an unlikely word in an evaluation example and asking the model to produce it. We find that certain commercial LLMs could surprisingly guess the missing option in various test sets. Specifically, in the TruthfulQA benchmark, we find that LLMs exhibit notable performance improvement when provided with additional metadata in the benchmark. Further, in the MMLU benchmark, ChatGPT and GPT-4 demonstrated an exact match rate of 52\% and 57\%, respectively, in guessing the missing options in benchmark test data. We hope these results underscore the need for more robust evaluation methodologies and benchmarks in the field.

Chain-of-Thought (CoT) prompting has boosted the multi-step reasoning capabilities of Large Language Models (LLMs) by generating a series of rationales before the final answer. We analyze the reasoning paths generated by CoT and find two issues in multi-step reasoning: (i) Generating rationales irrelevant to the question, (ii) Unable to compose subquestions or queries for generating/retrieving all the relevant information. To address them, we propose a graph-guided CoT prompting method, which guides the LLMs to reach the correct answer with graph representation/verification steps. Specifically, we first leverage LLMs to construct a "question/rationale graph" by using knowledge extraction prompting given the initial question and the rationales generated in the previous steps. Then, the graph verification step diagnoses the current rationale triplet by comparing it with the existing question/rationale graph to filter out irrelevant rationales and generate follow-up questions to obtain relevant information. Additionally, we generate CoT paths that exclude the extracted graph information to represent the context information missed from the graph extraction. Our graph-guided reasoning method shows superior performance compared to previous CoT prompting and the variants on multi-hop question answering benchmark datasets.

Large Language Models (LLMs) serve as repositories of extensive world knowledge, enabling them to perform tasks such as question-answering and fact-checking. However, this knowledge can become obsolete as global contexts change. In this paper, we introduce a novel problem in the realm of continual learning: Online Continual Knowledge Learning (OCKL). This problem formulation aims to manage the dynamic nature of world knowledge in LMs under real-time constraints. We propose a new benchmark and evaluation metric designed to measure both the rate of new knowledge acquisition and the retention of previously learned knowledge. Our empirical evaluation, conducted using a variety of state-of-the-art methods, establishes robust base-lines for OCKL. Our results reveal that existing continual learning approaches are unfortunately insufficient for tackling the unique challenges posed by OCKL. We identify key factors that influence the trade-off between knowledge acquisition and retention, thereby advancing our understanding of how to train LMs in a continually evolving environment.

While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.

With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.

Graph Convolutional Networks (GCNs) and their variants have experienced significant attention and have become the de facto methods for learning graph representations. GCNs derive inspiration primarily from recent deep learning approaches, and as a result, may inherit unnecessary complexity and redundant computation. In this paper, we reduce this excess complexity through successively removing nonlinearities and collapsing weight matrices between consecutive layers. We theoretically analyze the resulting linear model and show that it corresponds to a fixed low-pass filter followed by a linear classifier. Notably, our experimental evaluation demonstrates that these simplifications do not negatively impact accuracy in many downstream applications. Moreover, the resulting model scales to larger datasets, is naturally interpretable, and yields up to two orders of magnitude speedup over FastGCN.

北京阿比特科技有限公司