亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Defect detection plays a crucial role in infrared non-destructive testing systems, offering non-contact, safe, and efficient inspection capabilities. However, challenges such as low resolution, high noise, and uneven heating in infrared thermal images hinder comprehensive and accurate defect detection. In this study, we propose DefectSAM, a novel approach for segmenting defects on highly noisy thermal images based on the widely adopted model, Segment Anything (SAM)\cite{kirillov2023segany}. Harnessing the power of a meticulously curated dataset generated through labor-intensive lab experiments and valuable prompts from experienced experts, DefectSAM surpasses existing state-of-the-art segmentation algorithms and achieves significant improvements in defect detection rates. Notably, DefectSAM excels in detecting weaker and smaller defects on complex and irregular surfaces, reducing the occurrence of missed detections and providing more accurate defect size estimations. Experimental studies conducted on various materials have validated the effectiveness of our solutions in defect detection, which hold significant potential to expedite the evolution of defect detection tools, enabling enhanced inspection capabilities and accuracy in defect identification.

相關內容

Negative sampling is essential for implicit collaborative filtering to provide proper negative training signals so as to achieve desirable performance. We experimentally unveil a common limitation of all existing negative sampling methods that they can only select negative samples of a fixed hardness level, leading to the false positive problem (FPP) and false negative problem (FNP). We then propose a new paradigm called adaptive hardness negative sampling (AHNS) and discuss its three key criteria. By adaptively selecting negative samples with appropriate hardnesses during the training process, AHNS can well mitigate the impacts of FPP and FNP. Next, we present a concrete instantiation of AHNS called AHNS_{p<0}, and theoretically demonstrate that AHNS_{p<0} can fit the three criteria of AHNS well and achieve a larger lower bound of normalized discounted cumulative gain. Besides, we note that existing negative sampling methods can be regarded as more relaxed cases of AHNS. Finally, we conduct comprehensive experiments, and the results show that AHNS_{p<0} can consistently and substantially outperform several state-of-the-art competitors on multiple datasets.

Watermark text spotting in document images can offer access to an often unexplored source of information, providing crucial evidence about a record's scope, audience and sometimes even authenticity. Stemming from the problem of text spotting, detecting and understanding watermarks in documents inherits the same hardships - in the wild, writing can come in various fonts, sizes and forms, making generic recognition a very difficult problem. To address the lack of resources in this field and propel further research, we propose a novel benchmark (K-Watermark) containing 65,447 data samples generated using Wrender, a watermark text patterns rendering procedure. A validity study using humans raters yields an authenticity score of 0.51 against pre-generated watermarked documents. To prove the usefulness of the dataset and rendering technique, we developed an end-to-end solution (Wextract) for detecting the bounding box instances of watermark text, while predicting the depicted text. To deal with this specific task, we introduce a variance minimization loss and a hierarchical self-attention mechanism. To the best of our knowledge, we are the first to propose an evaluation benchmark and a complete solution for retrieving watermarks from documents surpassing baselines by 5 AP points in detection and 4 points in character accuracy.

Modeling long histories plays a pivotal role in enhancing recommendation systems, allowing to capture user's evolving preferences, resulting in more precise and personalized recommendations. In this study we tackle the challenges of modeling long user histories for preference understanding in natural language. Specifically, we introduce a new User Embedding Module (UEM) that efficiently processes user history in free-form text by compressing and representing them as embeddings, to use them as soft prompts to a LM. Our experiments demonstrate the superior capability of this approach in handling significantly longer histories compared to conventional text based prompting methods, yielding substantial improvements in predictive performance. The main contribution of this research is to demonstrate the ability to bias language models with user signals represented as embeddings.

Despite recent advances, Automatic Speech Recognition (ASR) systems are still far from perfect. Typical errors include acronyms, named entities and domain-specific special words for which little or no data is available. To address the problem of recognizing these words, we propose an self-supervised continual learning approach. Given the audio of a lecture talk with corresponding slides, we bias the model towards decoding new words from the slides by using a memory-enhanced ASR model from previous work. Then, we perform inference on the talk, collecting utterances that contain detected new words into an adaptation dataset. Continual learning is then performed on this set by adapting low-rank matrix weights added to each weight matrix of the model. The whole procedure is iterated for many talks. We show that with this approach, we obtain increasing performance on the new words when they occur more frequently (more than 80% recall) while preserving the general performance of the model.

Recent research found that fairness plays a key role in customer satisfaction. Therefore, many manufacturing and services industries have become aware of the need to treat customers fairly. Still, there is a huge lack of models that enable industries to make operational decisions fairly, such as a fair scheduling of the customers' jobs. Our main aim in this research is to provide a unified framework to enable schedulers making fair decisions in repetitive scheduling environments. For doing so, we consider a set of repetitive scheduling problems involving a set of $n$ clients. In each out of $q$ consecutive operational periods (e.g. days), each one of the customers submits a job for processing by an operational system. The scheduler's aim is to provide a schedule for each of the $q$ periods such that the quality of service (QoS) received by each of the clients will meet a certain predefined threshold. The QoS of a client may take several different forms, e.g., the number of days that the customer receives its job later than a given due-date, the number of times the customer receive his preferred time slot for service, or the sum of waiting times for service. We analyze the single machine variant of the problem for several different definitions of QoS, and classify the complexity of the corresponding problems using the theories of classical and parameterized complexity. We also study the price of fairness, i.e., the loss in the system's efficiency that results from the need to provide fair solutions.

The clustering coefficient is a valuable tool for understanding the structure of complex networks. It is widely used to analyze social networks, biological networks, and other complex systems. While there is generally a single common definition for the local clustering coefficient, there are two different ways to calculate the global clustering coefficient. The first approach takes the average of the local clustering coefficients for each node in the network. The second one is based on the ratio of closed triplets to all triplets. It is shown that these two definitions of the global clustering coefficients are strongly inequivalent and may significantly impact the accuracy of the outcome.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.

北京阿比特科技有限公司