亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The widespread use of Markov Chain Monte Carlo (MCMC) methods for high-dimensional applications has motivated research into the scalability of these algorithms with respect to the dimension of the problem. Despite this, numerous problems concerning output analysis in high-dimensional settings have remained unaddressed. We present novel quantitative Gaussian approximation results for a broad range of MCMC algorithms. Notably, we analyse the dependency of the obtained approximation errors on the dimension of both the target distribution and the feature space. We demonstrate how these Gaussian approximations can be applied in output analysis. This includes determining the simulation effort required to guarantee Markov chain central limit theorems and consistent variance estimation in high-dimensional settings. We give quantitative convergence bounds for termination criteria and show that the termination time of a wide class of MCMC algorithms scales polynomially in dimension while ensuring a desired level of precision. Our results offer guidance to practitioners for obtaining appropriate standard errors and deciding the minimum simulation effort of MCMC algorithms in both multivariate and high-dimensional settings.

相關內容

Large Language Models (LLMs) possess vast amounts of knowledge within their parameters, prompting research into methods for locating and editing this knowledge. Previous work has largely focused on locating entity-related (often single-token) facts in smaller models. However, several key questions remain unanswered: (1) How can we effectively locate query-relevant neurons in contemporary autoregressive LLMs, such as Llama and Mistral? (2) How can we address the challenge of long-form text generation? (3) Are there localized knowledge regions in LLMs? In this study, we introduce Query-Relevant Neuron Cluster Attribution (QRNCA), a novel architecture-agnostic framework capable of identifying query-relevant neurons in LLMs. QRNCA allows for the examination of long-form answers beyond triplet facts by employing the proxy task of multi-choice question answering. To evaluate the effectiveness of our detected neurons, we build two multi-choice QA datasets spanning diverse domains and languages. Empirical evaluations demonstrate that our method outperforms baseline methods significantly. Further, analysis of neuron distributions reveals the presence of visible localized regions, particularly within different domains. Finally, we show potential applications of our detected neurons in knowledge editing and neuron-based prediction.

Accessing machine learning models through remote APIs has been gaining prevalence following the recent trend of scaling up model parameters for increased performance. Even though these models exhibit remarkable ability, detecting out-of-distribution (OOD) samples remains a crucial safety concern for end users as these samples may induce unreliable outputs from the model. In this work, we propose an OOD detection framework, MixDiff, that is applicable even when the model's parameters or its activations are not accessible to the end user. To bypass the access restriction, MixDiff applies an identical input-level perturbation to a given target sample and a similar in-distribution (ID) sample, then compares the relative difference in the model outputs of these two samples. MixDiff is model-agnostic and compatible with existing output-based OOD detection methods. We provide theoretical analysis to illustrate MixDiff's effectiveness in discerning OOD samples that induce overconfident outputs from the model and empirically demonstrate that MixDiff consistently enhances the OOD detection performance on various datasets in vision and text domains.

Stacked intelligent metasurfaces (SIM) have recently emerged as a promising technology, which can realize transmit precoding in the wave domain. In this paper, we investigate a SIM-aided integrated sensing and communications system, in which SIM is capable of generating a desired beam pattern for simultaneously communicating with multiple downlink users and detecting a radar target. Specifically, we formulate an optimization problem of maximizing the spectrum efficiency, while satisfying the power constraint of the desired direction. This requires jointly designing the phase shifts of the SIM and the power allocation at the base station. By incorporating the sensing power constraint into the objective functions as a penalty term, we further simplify the optimization problem and solve it by customizing an efficient gradient ascent algorithm. Finally, extensive numerical results demonstrate the effectiveness of the proposed wave-domain precoder for automatically mitigating the inter-user interference and generating a desired beampattern for the sensing task, as multiple separate data streams transmit through the SIM.

With the ever-growing variety of object detection approaches, this study explores a series of experiments that combine reinforcement learning (RL)-based visual attention methods with saliency ranking techniques to investigate transparent and sustainable solutions. By integrating saliency ranking for initial bounding box prediction and subsequently applying RL techniques to refine these predictions through a finite set of actions over multiple time steps, this study aims to enhance RL object detection accuracy. Presented as a series of experiments, this research investigates the use of various image feature extraction methods and explores diverse Deep Q-Network (DQN) architectural variations for deep reinforcement learning-based localisation agent training. Additionally, we focus on optimising the detection pipeline at every step by prioritising lightweight and faster models, while also incorporating the capability to classify detected objects, a feature absent in previous RL approaches. We show that by evaluating the performance of these trained agents using the Pascal VOC 2007 dataset, faster and more optimised models were developed. Notably, the best mean Average Precision (mAP) achieved in this study was 51.4, surpassing benchmarks set by RL-based single object detectors in the literature.

The increasing prevalence of adversarial attacks on Artificial Intelligence (AI) systems has created a need for innovative security measures. However, the current methods of defending against these attacks often come with a high computing cost and require back-end processing, making real-time defense challenging. Fortunately, there have been remarkable advancements in edge-computing, which make it easier to deploy neural networks on edge devices. Building upon these advancements, we propose an edge framework design to enable universal and efficient detection of adversarial attacks. This framework incorporates an attention-based adversarial detection methodology and a lightweight detection network formation, making it suitable for a wide range of neural networks and can be deployed on edge devices. To assess the effectiveness of our proposed framework, we conducted evaluations on five neural networks. The results indicate an impressive 97.43% F-score can be achieved, demonstrating the framework's proficiency in detecting adversarial attacks. Moreover, our proposed framework also exhibits significantly reduced computing complexity and cost in comparison to previous detection methods. This aspect is particularly beneficial as it ensures that the defense mechanism can be efficiently implemented in real-time on-edge devices.

Serverless workflows have emerged in FaaS platforms to represent the operational structure of traditional applications. With latency propagation effects becoming increasingly prominent, step-wise resource tuning is required to address the end-to-end Quality-of-Service (QoS) requirements. Modern processors' allowance for fine-grained Dynamic Voltage and Frequency Scaling (DVFS), coupled with the intermittent nature of serverless workflows presents a unique opportunity to reduce power while meeting QoS. In this paper, we introduce a QoS-aware DVFS framework for serverless workflows. {\Omega}kypous regulates the end-to-end latency of serverless workflows by supplying the system with the Core/Uncore frequency combination that minimizes power consumption. With Uncore DVFS enriching the efficient power configurations space, we devise a grey-box model that accurately projects functions' execution latency and power, to the applied Core and Uncore frequency combination. To the best of our knowledge, {\Omega}kypous is the first work that leverages Core and Uncore DVFS as an integral part of serverless workflows. Our evaluation on the analyzed Azure Trace, against state-of-the-art (SotA) power managers, demonstrates a power consumption reduction of 20\% while minimizing QoS violations.

Automated Machine Learning (AutoML) significantly simplifies the deployment of machine learning models by automating tasks from data preprocessing to model selection to ensembling. AutoML systems for tabular data often employ post hoc ensembling, where multiple models are combined to improve predictive accuracy. This typically results in longer inference times, a major limitation in practical deployments. Addressing this, we introduce a hardware-aware ensemble selection approach that integrates inference time into post hoc ensembling. By leveraging an existing framework for ensemble selection with quality diversity optimization, our method evaluates ensemble candidates for their predictive accuracy and hardware efficiency. This dual focus allows for a balanced consideration of accuracy and operational efficiency. Thus, our approach enables practitioners to choose from a Pareto front of accurate and efficient ensembles. Our evaluation using 83 classification datasets shows that our approach sustains competitive accuracy and can significantly improve ensembles' operational efficiency. The results of this study provide a foundation for extending these principles to additional hardware constraints, setting the stage for the development of more resource-efficient AutoML systems.

In the field of machine unlearning, certified unlearning has been extensively studied in convex machine learning models due to its high efficiency and strong theoretical guarantees. However, its application to deep neural networks (DNNs), known for their highly nonconvex nature, still poses challenges. To bridge the gap between certified unlearning and DNNs, we propose several simple techniques to extend certified unlearning methods to nonconvex objectives. To reduce the time complexity, we develop an efficient computation method by inverse Hessian approximation without compromising certification guarantees. In addition, we extend our discussion of certification to nonconvergence training and sequential unlearning, considering that real-world users can send unlearning requests at different time points. Extensive experiments on three real-world datasets demonstrate the efficacy of our method and the advantages of certified unlearning in DNNs.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

北京阿比特科技有限公司