The increasing prevalence of adversarial attacks on Artificial Intelligence (AI) systems has created a need for innovative security measures. However, the current methods of defending against these attacks often come with a high computing cost and require back-end processing, making real-time defense challenging. Fortunately, there have been remarkable advancements in edge-computing, which make it easier to deploy neural networks on edge devices. Building upon these advancements, we propose an edge framework design to enable universal and efficient detection of adversarial attacks. This framework incorporates an attention-based adversarial detection methodology and a lightweight detection network formation, making it suitable for a wide range of neural networks and can be deployed on edge devices. To assess the effectiveness of our proposed framework, we conducted evaluations on five neural networks. The results indicate an impressive 97.43% F-score can be achieved, demonstrating the framework's proficiency in detecting adversarial attacks. Moreover, our proposed framework also exhibits significantly reduced computing complexity and cost in comparison to previous detection methods. This aspect is particularly beneficial as it ensures that the defense mechanism can be efficiently implemented in real-time on-edge devices.
The recently developed retrieval-augmented generation (RAG) technology has enabled the efficient construction of domain-specific applications. However, it also has limitations, including the gap between vector similarity and the relevance of knowledge reasoning, as well as insensitivity to knowledge logic, such as numerical values, temporal relations, expert rules, and others, which hinder the effectiveness of professional knowledge services. In this work, we introduce a professional domain knowledge service framework called Knowledge Augmented Generation (KAG). KAG is designed to address the aforementioned challenges with the motivation of making full use of the advantages of knowledge graph(KG) and vector retrieval, and to improve generation and reasoning performance by bidirectionally enhancing large language models (LLMs) and KGs through five key aspects: (1) LLM-friendly knowledge representation, (2) mutual-indexing between knowledge graphs and original chunks, (3) logical-form-guided hybrid reasoning engine, (4) knowledge alignment with semantic reasoning, and (5) model capability enhancement for KAG. We compared KAG with existing RAG methods in multihop question answering and found that it significantly outperforms state-of-theart methods, achieving a relative improvement of 19.6% on 2wiki and 33.5% on hotpotQA in terms of F1 score. We have successfully applied KAG to two professional knowledge Q&A tasks of Ant Group, including E-Government Q&A and E-Health Q&A, achieving significant improvement in professionalism compared to RAG methods.
The semiconductor industry's paradigm shift towards fabless integrated circuit (IC) manufacturing has introduced security threats, including piracy, counterfeiting, hardware Trojans, and overproduction. In response to these challenges, various countermeasures, including Logic locking (LL), have been proposed to protect designs and mitigate security risks. LL is likely the most researched form of intellectual property (IP) protection for ICs. A significant advance has been made with the introduction of compound logic locking (CLL), where two LL techniques are concurrently utilized for improved resiliency against attacks. However, the vulnerabilities of LL techniques, particularly CLL, need to be explored further. This paper presents a novel framework, RESAA, designed to classify CLL-locked designs, identify critical gates, and execute various attacks to uncover secret keys. RESAA is agnostic to specific LL techniques, offering comprehensive insights into CLL's security scenarios. Experimental results demonstrate RESAA's efficacy in identifying critical gates, distinguishing segments corresponding to different LL techniques, and determining associated keys based on different threat models. In particular, for the oracle-less threat model, RESAA can achieve up to 92.6% accuracy on a relatively complex ITC'99 benchmark circuit. The results reported in this paper emphasize the significance of evaluation and thoughtful selection of LL techniques, as all studied CLL variants demonstrated vulnerability to our framework. RESAA is also open-sourced for the community at large.
Modern recommender systems are built upon computation-intensive infrastructure, and it is challenging to perform real-time computation for each request, especially in peak periods, due to the limited computational resources. Recommending by user-wise result caches is widely used when the system cannot afford a real-time recommendation. However, it is challenging to allocate real-time and cached recommendations to maximize the users' overall engagement. This paper shows two key challenges to cache allocation, i.e., the value-strategy dependency and the streaming allocation. Then, we propose a reinforcement prediction-allocation framework (RPAF) to address these issues. RPAF is a reinforcement-learning-based two-stage framework containing prediction and allocation stages. The prediction stage estimates the values of the cache choices considering the value-strategy dependency, and the allocation stage determines the cache choices for each individual request while satisfying the global budget constraint. We show that the challenge of training RPAF includes globality and the strictness of budget constraints, and a relaxed local allocator (RLA) is proposed to address this issue. Moreover, a PoolRank algorithm is used in the allocation stage to deal with the streaming allocation problem. Experiments show that RPAF significantly improves users' engagement under computational budget constraints.
A core strength of Model Predictive Control (MPC) for quadrupedal locomotion has been its ability to enforce constraints and provide interpretability of the sequence of commands over the horizon. However, despite being able to plan, MPC struggles to scale with task complexity, often failing to achieve robust behavior on rapidly changing surfaces. On the other hand, model-free Reinforcement Learning (RL) methods have outperformed MPC on multiple terrains, showing emergent motions but inherently lack any ability to handle constraints or perform planning. To address these limitations, we propose a framework that integrates proprioceptive planning with RL, allowing for agile and safe locomotion behaviors through the horizon. Inspired by MPC, we incorporate an internal model that includes a velocity estimator and a Dreamer module. During training, the framework learns an expert policy and an internal model that are co-dependent, facilitating exploration for improved locomotion behaviors. During deployment, the Dreamer module solves an infinite-horizon MPC problem, adapting actions and velocity commands to respect the constraints. We validate the robustness of our training framework through ablation studies on internal model components and demonstrate improved robustness to training noise. Finally, we evaluate our approach across multi-terrain scenarios in both simulation and hardware.
Recent advances in machine learning (ML) for automating analog circuit synthesis have been significant, yet challenges remain. A critical gap is the lack of a standardized evaluation framework, compounded by various process design kits (PDKs), simulation tools, and a limited variety of circuit topologies. These factors hinder direct comparisons and the validation of algorithms. To address these shortcomings, we introduced AnalogGym, an open-source testing suite designed to provide fair and comprehensive evaluations. AnalogGym includes 30 circuit topologies in five categories: sensing front ends, voltage references, low dropout regulators, amplifiers, and phase-locked loops. It supports several technology nodes for academic and commercial applications and is compatible with commercial simulators such as Cadence Spectre, Synopsys HSPICE, and the open-source simulator Ngspice. AnalogGym standardizes the assessment of ML algorithms in analog circuit synthesis and promotes reproducibility with its open datasets and detailed benchmark specifications. AnalogGym's user-friendly design allows researchers to easily adapt it for robust, transparent comparisons of state-of-the-art methods, while also exposing them to real-world industrial design challenges, enhancing the practical relevance of their work. Additionally, we have conducted a comprehensive comparison study of various analog sizing methods on AnalogGym, highlighting the capabilities and advantages of different approaches. AnalogGym is available in the GitHub repository //github.com/CODA-Team/AnalogGym. The documentation is also available at //coda-team.github.io/AnalogGym/.
While witnessing the exceptional success of machine learning (ML) technologies in many applications, users are starting to notice a critical shortcoming of ML: correlation is a poor substitute for causation. The conventional way to discover causal relationships is to use randomized controlled experiments (RCT); in many situations, however, these are impractical or sometimes unethical. Causal learning from observational data offers a promising alternative. While being relatively recent, causal learning aims to go far beyond conventional machine learning, yet several major challenges remain. Unfortunately, advances are hampered due to the lack of unified benchmark datasets, algorithms, metrics, and evaluation service interfaces for causal learning. In this paper, we introduce {\em CausalBench}, a transparent, fair, and easy-to-use evaluation platform, aiming to (a) enable the advancement of research in causal learning by facilitating scientific collaboration in novel algorithms, datasets, and metrics and (b) promote scientific objectivity, reproducibility, fairness, and awareness of bias in causal learning research. CausalBench provides services for benchmarking data, algorithms, models, and metrics, impacting the needs of a broad of scientific and engineering disciplines.
Perception-based navigation systems are useful for unmanned ground vehicle (UGV) navigation in complex terrains, where traditional depth-based navigation schemes are insufficient. However, these data-driven methods are highly dependent on their training data and can fail in surprising and dramatic ways with little warning. To ensure the safety of the vehicle and the surrounding environment, it is imperative that the navigation system is able to recognize the predictive uncertainty of the perception model and respond safely and effectively in the face of uncertainty. In an effort to enable safe navigation under perception uncertainty, we develop a probabilistic and reconstruction-based competency estimation (PaRCE) method to estimate the model's level of familiarity with an input image as a whole and with specific regions in the image. We find that the overall competency score can correctly predict correctly classified, misclassified, and out-of-distribution (OOD) samples. We also confirm that the regional competency maps can accurately distinguish between familiar and unfamiliar regions across images. We then use this competency information to develop a planning and control scheme that enables effective navigation while maintaining a low probability of error. We find that the competency-aware scheme greatly reduces the number of collisions with unfamiliar obstacles, compared to a baseline controller with no competency awareness. Furthermore, the regional competency information is very valuable in enabling efficient navigation.
This work considers the problem of integrated sensing and communications (ISAC) with a massive number of unsourced and uncoordinated users. In the proposed model, known as the unsourced ISAC system (UNISAC), all active communication and sensing users simultaneously share a short frame to transmit their signals, without requiring scheduling with the base station (BS). Hence, the signal received from each user is affected by significant interference from numerous interfering users, making it challenging to extract the transmitted signals. UNISAC aims to decode the transmitted message sequences from communication users while simultaneously detecting active sensing users and estimating their angles of arrival, regardless of the identity of the senders. In this paper, we derive an approximate achievable result for UNISAC and demonstrate its superiority over conventional approaches such as ALOHA, time-division multiple access, treating interference as noise, and multiple signal classification. Through numerical simulations, we validate the effectiveness of UNISAC's sensing and communication capabilities for a large number of users.
Panoptic perception represents a forefront advancement in autonomous driving technology, unifying multiple perception tasks into a singular, cohesive framework to facilitate a thorough understanding of the vehicle's surroundings. This survey reviews typical panoptic perception models for their unique inputs and architectures and compares them to performance, responsiveness, and resource utilization. It also delves into the prevailing challenges faced in panoptic perception and explores potential trajectories for future research. Our goal is to furnish researchers in autonomous driving with a detailed synopsis of panoptic perception, positioning this survey as a pivotal reference in the ever-evolving landscape of autonomous driving technologies.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.