亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Bayesian Optimization (BO) links Gaussian Process (GP) surrogates with sequential design toward optimizing expensive-to-evaluate black-box functions. Example design heuristics, or so-called acquisition functions, like expected improvement (EI), balance exploration and exploitation to furnish global solutions under stringent evaluation budgets. However, they fall short when solving for robust optima, meaning a preference for solutions in a wider domain of attraction. Robust solutions are useful when inputs are imprecisely specified, or where a series of solutions is desired. A common mathematical programming technique in such settings involves an adversarial objective, biasing a local solver away from ``sharp'' troughs. Here we propose a surrogate modeling and active learning technique called robust expected improvement (REI) that ports adversarial methodology into the BO/GP framework. After describing the methods, we illustrate and draw comparisons to several competitors on benchmark synthetic and real problems of varying complexity.

相關內容

Recent work in the matrix completion literature has shown that prior knowledge of a matrix's row and column spaces can be successfully incorporated into reconstruction programs to substantially benefit matrix recovery. This paper proposes a novel methodology that exploits more general forms of known matrix structure in terms of subspaces. The work derives reconstruction error bounds that are informative in practice, providing insight to previous approaches in the literature while introducing novel programs that severely reduce sampling complexity. The main result shows that a family of weighted nuclear norm minimization programs incorporating a $M_1 r$-dimensional subspace of $n\times n$ matrices (where $M_1\geq 1$ conveys structural properties of the subspace) allow accurate approximation of a rank $r$ matrix aligned with the subspace from a near-optimal number of observed entries (within a logarithmic factor of $M_1 r)$. The result is robust, where the error is proportional to measurement noise, applies to full rank matrices, and reflects degraded output when erroneous prior information is utilized. Numerical experiments are presented that validate the theoretical behavior derived for several example weighted programs.

Predicting athletes' performance has relied mostly on statistical data. Besides the traditional data, various types of data, including video, have become available. However, it is challenging to use them for deep learning, especially when the size of the athletes' dataset is small. This research proposes a feature-selection strategy based on the criteria used by insightful people, which could improve ML performance. Our ML model employs features selected by people who correctly evaluated the athletes' future performance. We tested out a strategy to predict the LPGA players' next day performance using their interview video. We asked study participants to predict the players' next day score after watching the interviews and asked why. Using combined features of the facial landmarks' movements, derived from the participants, and meta-data showed a better F1-score than using each feature separately. This study suggests that the human-in-the-loop model could improve algorithms' performance with small-dataset.

Bayesian optimization is a coherent, ubiquitous approach to decision-making under uncertainty, with applications including multi-arm bandits, active learning, and black-box optimization. Bayesian optimization selects decisions (i.e. objective function queries) with maximal expected utility with respect to the posterior distribution of a Bayesian model, which quantifies reducible, epistemic uncertainty about query outcomes. In practice, subjectively implausible outcomes can occur regularly for two reasons: 1) model misspecification and 2) covariate shift. Conformal prediction is an uncertainty quantification method with coverage guarantees even for misspecified models and a simple mechanism to correct for covariate shift. We propose conformal Bayesian optimization, which directs queries towards regions of search space where the model predictions have guaranteed validity, and investigate its behavior on a suite of black-box optimization tasks and tabular ranking tasks. In many cases we find that query coverage can be significantly improved without harming sample-efficiency.

This paper provides two parallel solutions on the mixed boundary value problem of a unit annulus subjected to a partially fixed outer periphery and an arbitrary traction acting along the inner periphery using the complex variable method. The analytic continuation is applied to turn the mixed boundary value problem into a Riemann-Hilbert problem across the free segment along the outer periphery. Two parallel interpreting methods of the unused traction and displacement boundary condition along the outer periphery together with the traction boundary condition along the inner periphery respectively form two parallel complex linear constraint sets, which are then iteratively solved via a successive approximation method to reach the same stable stress and displacement solutions with the Lanczos filtering technique. Finally, four typical numerical cases coded by \texttt{FORTRAN} are carried out and compared to the same cases performed on \texttt{ABAQUS}. The results indicate that these two parallel solutions are both accurate, stable, robust, and fast, and validate that these two parallel solutions are numerically equivalent.

Stochastic kinetic models (SKMs) are increasingly used to account for the inherent stochasticity exhibited by interacting populations of species in areas such as epidemiology, population ecology and systems biology. Species numbers are modelled using a continuous-time stochastic process, and, depending on the application area of interest, this will typically take the form of a Markov jump process or an It\^o diffusion process. Widespread use of these models is typically precluded by their computational complexity. In particular, performing exact fully Bayesian inference in either modelling framework is challenging due to the intractability of the observed data likelihood, necessitating the use of computationally intensive techniques such as particle Markov chain Monte Carlo (particle MCMC). It is proposed to increase the computational and statistical efficiency of this approach by leveraging the tractability of an inexpensive surrogate derived directly from either the jump or diffusion process. The surrogate is used in three ways: in the design of a gradient-based parameter proposal, to construct an appropriate bridge and in the first stage of a delayed-acceptance step. The resulting approach, which exactly targets the posterior of interest, offers substantial gains in efficiency over a standard particle MCMC implementation.

We introduce Matched Machine Learning, a framework that combines the flexibility of machine learning black boxes with the interpretability of matching, a longstanding tool in observational causal inference. Interpretability is paramount in many high-stakes application of causal inference. Current tools for nonparametric estimation of both average and individualized treatment effects are black-boxes that do not allow for human auditing of estimates. Our framework uses machine learning to learn an optimal metric for matching units and estimating outcomes, thus achieving the performance of machine learning black-boxes, while being interpretable. Our general framework encompasses several published works as special cases. We provide asymptotic inference theory for our proposed framework, enabling users to construct approximate confidence intervals around estimates of both individualized and average treatment effects. We show empirically that instances of Matched Machine Learning perform on par with black-box machine learning methods and better than existing matching methods for similar problems. Finally, in our application we show how Matched Machine Learning can be used to perform causal inference even when covariate data are highly complex: we study an image dataset, and produce high quality matches and estimates of treatment effects.

Role-based learning is a promising approach to improving the performance of Multi-Agent Reinforcement Learning (MARL). Nevertheless, without manual assistance, current role-based methods cannot guarantee stably discovering a set of roles to effectively decompose a complex task, as they assume either a predefined role structure or practical experience for selecting hyperparameters. In this article, we propose a mathematical Structural Information principles-based Role Discovery method, namely SIRD, and then present a SIRD optimizing MARL framework, namely SR-MARL, for multi-agent collaboration. The SIRD transforms role discovery into a hierarchical action space clustering. Specifically, the SIRD consists of structuralization, sparsification, and optimization modules, where an optimal encoding tree is generated to perform abstracting to discover roles. The SIRD is agnostic to specific MARL algorithms and flexibly integrated with various value function factorization approaches. Empirical evaluations on the StarCraft II micromanagement benchmark demonstrate that, compared with state-of-the-art MARL algorithms, the SR-MARL framework improves the average test win rate by 0.17%, 6.08%, and 3.24%, and reduces the deviation by 16.67%, 30.80%, and 66.30%, under easy, hard, and super hard scenarios.

Bayesian optimization is a methodology for global optimization of unknown and expensive objectives. It combines a surrogate Bayesian regression model with an acquisition function to decide where to evaluate the objective. Typical regression models are given by Gaussian processes with stationary covariance functions. However, these functions are unable to express prior input-dependent information, including possible locations of the optimum. The ubiquity of stationary models has led to the common practice of exploiting prior information via informative mean functions. In this paper, we highlight that these models can perform poorly, especially in high dimensions. We propose novel informative covariance functions for optimization, leveraging nonstationarity to encode preferences for certain regions of the search space and adaptively promote local exploration during optimization. We demonstrate that the proposed functions can increase the sample efficiency of Bayesian optimization in high dimensions, even under weak prior information.

This paper studies the problem of designing an optimal sequence of interventions in a causal graphical model to minimize cumulative regret with respect to the best intervention in hindsight. This is, naturally, posed as a causal bandit problem. The focus is on causal bandits for linear structural equation models (SEMs) and soft interventions. It is assumed that the graph's structure is known and has $N$ nodes. Two linear mechanisms, one soft intervention and one observational, are assumed for each node, giving rise to $2^N$ possible interventions. Majority of the existing causal bandit algorithms assume that at least the interventional distributions of the reward node's parents are fully specified. However, there are $2^N$ such distributions (one corresponding to each intervention), acquiring which becomes prohibitive even in moderate-sized graphs. This paper dispenses with the assumption of knowing these distributions or their marginals. Two algorithms are proposed for the frequentist (UCB-based) and Bayesian (Thompson Sampling-based) settings. The key idea of these algorithms is to avoid directly estimating the $2^N$ reward distributions and instead estimate the parameters that fully specify the SEMs (linear in $N$) and use them to compute the rewards. In both algorithms, under boundedness assumptions on noise and the parameter space, the cumulative regrets scale as $\tilde{\cal O} (d^{L+\frac{1}{2}} \sqrt{NT})$, where $d$ is the graph's maximum degree, and $L$ is the length of its longest causal path. Additionally, a minimax lower of $\Omega(d^{\frac{L}{2}-2}\sqrt{T})$ is presented, which suggests that the achievable and lower bounds conform in their scaling behavior with respect to the horizon $T$ and graph parameters $d$ and $L$.

Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.

北京阿比特科技有限公司