The purpose of this work is to study an optimal control problem for a semilinear elliptic partial differential equation with a linear combination of Dirac measures as a forcing term; the control variable corresponds to the amplitude of such singular sources. We analyze the existence of optimal solutions and derive first and, necessary and sufficient, second order optimality conditions. We develop a solution technique that discretizes the state and adjoint equations with continuous piecewise linear finite elements; the control variable is already discrete. We analyze the convergence properties of discretizations and obtain, in two dimensions, an a priori error estimate for the underlying approximation of an optimal control variable.
For the convolutional neural network (CNN) used for pattern classification, the training loss function is usually applied to the final output of the network, except for some regularization constraints on the network parameters. However, with the increasing of the number of network layers, the influence of the loss function on the network front layers gradually decreases, and the network parameters tend to fall into local optimization. At the same time, it is found that the trained network has significant information redundancy at all stages of features, which reduces the effectiveness of feature mapping at all stages and is not conducive to the change of the subsequent parameters of the network in the direction of optimality. Therefore, it is possible to obtain a more optimized solution of the network and further improve the classification accuracy of the network by designing a loss function for restraining the front stage features and eliminating the information redundancy of the front stage features .For CNN, this article proposes a multi-stage feature decorrelation loss (MFD Loss), which refines effective features and eliminates information redundancy by constraining the correlation of features at all stages. Considering that there are many layers in CNN, through experimental comparison and analysis, MFD Loss acts on multiple front layers of CNN, constrains the output features of each layer and each channel, and performs supervision training jointly with classification loss function during network training. Compared with the single Softmax Loss supervised learning, the experiments on several commonly used datasets on several typical CNNs prove that the classification performance of Softmax Loss+MFD Loss is significantly better. Meanwhile, the comparison experiments before and after the combination of MFD Loss and some other typical loss functions verify its good universality.
Some applications of deep learning require not only to provide accurate results but also to quantify the amount of confidence in their prediction. The management of an electric power grid is one of these cases: to avoid risky scenarios, decision-makers need both precise and reliable forecasts of, for example, power loads. For this reason, point forecasts are not enough hence it is necessary to adopt methods that provide an uncertainty quantification. This work focuses on reservoir computing as the core time series forecasting method, due to its computational efficiency and effectiveness in predicting time series. While the RC literature mostly focused on point forecasting, this work explores the compatibility of some popular uncertainty quantification methods with the reservoir setting. Both Bayesian and deterministic approaches to uncertainty assessment are evaluated and compared in terms of their prediction accuracy, computational resource efficiency and reliability of the estimated uncertainty, based on a set of carefully chosen performance metrics.
In many scientific applications the aim is to infer a function which is smooth in some areas, but rough or even discontinuous in other areas of its domain. Such spatially inhomogeneous functions can be modelled in Besov spaces with suitable integrability parameters. In this work we study adaptive Bayesian inference over Besov spaces, in the white noise model from the point of view of rates of contraction, using $p$-exponential priors, which range between Laplace and Gaussian and possess regularity and scaling hyper-parameters. To achieve adaptation, we employ empirical and hierarchical Bayes approaches for tuning these hyper-parameters. Our results show that, while it is known that Gaussian priors can attain the minimax rate only in Besov spaces of spatially homogeneous functions, Laplace priors attain the minimax or nearly the minimax rate in both Besov spaces of spatially homogeneous functions and Besov spaces permitting spatial inhomogeneities.
Neural dynamical systems with stable attractor structures, such as point attractors and continuous attractors, are hypothesized to underlie meaningful temporal behavior that requires working memory. However, working memory may not support useful learning signals necessary to adapt to changes in the temporal structure of the environment. We show that in addition to the continuous attractors that are widely implicated, periodic and quasi-periodic attractors can also support learning arbitrarily long temporal relationships. Unlike the continuous attractors that suffer from the fine-tuning problem, the less explored quasi-periodic attractors are uniquely qualified for learning to produce temporally structured behavior. Our theory has broad implications for the design of artificial learning systems and makes predictions about observable signatures of biological neural dynamics that can support temporal dependence learning and working memory. Based on our theory, we developed a new initialization scheme for artificial recurrent neural networks that outperforms standard methods for tasks that require learning temporal dynamics. Moreover, we propose a robust recurrent memory mechanism for integrating and maintaining head direction without a ring attractor.
We consider the solution of large stiff systems of ordinary differential equations with explicit exponential Runge--Kutta integrators. These problems arise from semi-discretized semi-linear parabolic partial differential equations on continuous domains or on inherently discrete graph domains. A series of results reduces the requirement of computing linear combinations of $\varphi$-functions in exponential integrators to the approximation of the action of a smaller number of matrix exponentials on certain vectors. State-of-the-art computational methods use polynomial Krylov subspaces of adaptive size for this task. They have the drawback that the required number of Krylov subspace iterations to obtain a desired tolerance increase drastically with the spectral radius of the discrete linear differential operator, e.g., the problem size. We present an approach that leverages rational Krylov subspace methods promising superior approximation qualities. We prove a novel a-posteriori error estimate of rational Krylov approximations to the action of the matrix exponential on vectors for single time points, which allows for an adaptive approach similar to existing polynomial Krylov techniques. We discuss pole selection and the efficient solution of the arising sequences of shifted linear systems by direct and preconditioned iterative solvers. Numerical experiments show that our method outperforms the state of the art for sufficiently large spectral radii of the discrete linear differential operators. The key to this are approximately constant numbers of rational Krylov iterations, which enable a near-linear scaling of the runtime with respect to the problem size.
We introduce the concept of decision-focused surrogate modeling for solving computationally challenging nonlinear optimization problems in real-time settings. The proposed data-driven framework seeks to learn a simpler, e.g. convex, surrogate optimization model that is trained to minimize the decision prediction error, which is defined as the difference between the optimal solutions of the original and the surrogate optimization models. The learning problem, formulated as a bilevel program, can be viewed as a data-driven inverse optimization problem to which we apply a decomposition-based solution algorithm from previous work. We validate our framework through numerical experiments involving the optimization of common nonlinear chemical processes such as chemical reactors, heat exchanger networks, and material blending systems. We also present a detailed comparison of decision-focused surrogate modeling with standard data-driven surrogate modeling methods and demonstrate that our approach is significantly more data-efficient while producing simple surrogate models with high decision prediction accuracy.
Many economic panel and dynamic models, such as rational behavior and Euler equations, imply that the parameters of interest are identified by conditional moment restrictions with high dimensional conditioning instruments. We develop a novel inference method for the parameters identified by conditional moment restrictions, where the dimension of the conditioning instruments is high and there is no prior information about which conditioning instruments are weak or irrelevant. Building on Bierens (1990), we propose penalized maximum statistics and combine bootstrap inference with model selection. Our method optimizes the asymptotic power against a set of $n^{-1/2}$-local alternatives of interest by solving a data-dependent max-min problem for tuning parameter selection. We demonstrate the efficacy of our method by two empirical examples: the elasticity of intertemporal substitution and rational unbiased reporting of ability status. Extensive Monte Carlo experiments based on the first empirical example show that our inference procedure is superior to those available in the literature in realistic settings.
It is known that different categorial grammars have surface representation in a fragment of first order multiplicative linear logic (MLL1). We show that the fragment of interest is equivalent to the recently introduced extended tensor type calculus (ETTC). ETTC is a calculus of specific typed terms, which represent tuples of strings, more precisely bipartite graphs decorated with strings. Types are derived from linear logic formulas, and rules correspond to concrete operations on these string-labeled graphs, so that they can be conveniently visualized. This provides the above mentioned fragment of MLL1 that is relevant for language modeling not only with some alternative syntax and intuitive geometric representation, but also with an intrinsic deductive system, which has been absent. In this work we consider a non-trivial notationally enriched variation of the previously introduced {\bf ETTC}, which allows more concise and transparent computations. We present both a cut-free sequent calculus and a natural deduction formalism.
We consider testing invariance of a distribution under an algebraic group of transformations, which includes permutations. In this context, it is commonly believed that one should strive to construct a test based on the entire group. We find that one can sometimes obtain dramatically more power by replacing the entire group with a tiny subgroup. Surprisingly, this allows us to obtain much more power at a much lower computational cost. We examine this finding in the popular group invariance-based Westfall & Young MaxT multiple testing method. Studying the relative efficiency in a Gaussian location model, we find the power gain to be largest in high-dimensional settings.
The solution to partial differential equations using deep learning approaches has shown promising results for several classes of initial and boundary-value problems. However, their ability to surpass, particularly in terms of accuracy, classical discretization methods such as the finite element methods, remains a significant challenge. Deep learning methods usually struggle to reliably decrease the error in their approximate solution. A new methodology to better control the error for deep learning methods is presented here. The main idea consists in computing an initial approximation to the problem using a simple neural network and in estimating, in an iterative manner, a correction by solving the problem for the residual error with a new network of increasing complexity. This sequential reduction of the residual of the partial differential equation allows one to decrease the solution error, which, in some cases, can be reduced to machine precision. The underlying explanation is that the method is able to capture at each level smaller scales of the solution using a new network. Numerical examples in 1D and 2D are presented to demonstrate the effectiveness of the proposed approach. This approach applies not only to physics informed neural networks but to other neural network solvers based on weak or strong formulations of the residual.