亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the development of blockchain technology, smart contracts have become an important component of blockchain applications. Despite their crucial role, the development of smart contracts may introduce vulnerabilities and potentially lead to severe consequences, such as financial losses. Meanwhile, large language models, represented by ChatGPT, have gained great attentions, showcasing great capabilities in code analysis tasks. In this paper, we presented an empirical study to investigate the performance of ChatGPT in identifying smart contract vulnerabilities. Initially, we evaluated ChatGPT's effectiveness using a publicly available smart contract dataset. Our findings discover that while ChatGPT achieves a high recall rate, its precision in pinpointing smart contract vulnerabilities is limited. Furthermore, ChatGPT's performance varies when detecting different vulnerability types. We delved into the root causes for the false positives generated by ChatGPT, and categorized them into four groups. Second, by comparing ChatGPT with other state-of-the-art smart contract vulnerability detection tools, we found that ChatGPT's F-score is lower than others for 3 out of the 7 vulnerabilities. In the case of the remaining 4 vulnerabilities, ChatGPT exhibits a slight advantage over these tools. Finally, we analyzed the limitation of ChatGPT in smart contract vulnerability detection, revealing that the robustness of ChatGPT in this field needs to be improved from two aspects: its uncertainty in answering questions; and the limited length of the detected code. In general, our research provides insights into the strengths and weaknesses of employing large language models, specifically ChatGPT, for the detection of smart contract vulnerabilities.

相關內容

NLP models have progressed drastically in recent years, according to numerous datasets proposed to evaluate performance. Questions remain, however, about how particular dataset design choices may impact the conclusions we draw about model capabilities. In this work, we investigate this question in the domain of compositional generalization. We examine the performance of six modeling approaches across 4 datasets, split according to 8 compositional splitting strategies, ranking models by 18 compositional generalization splits in total. Our results show that: i) the datasets, although all designed to evaluate compositional generalization, rank modeling approaches differently; ii) datasets generated by humans align better with each other than they with synthetic datasets, or than synthetic datasets among themselves; iii) generally, whether datasets are sampled from the same source is more predictive of the resulting model ranking than whether they maintain the same interpretation of compositionality; and iv) which lexical items are used in the data can strongly impact conclusions. Overall, our results demonstrate that much work remains to be done when it comes to assessing whether popular evaluation datasets measure what they intend to measure, and suggest that elucidating more rigorous standards for establishing the validity of evaluation sets could benefit the field.

Within the multimodal field, the key to integrating vision and language lies in establishing a good alignment strategy. Recently, benefiting from the success of self-supervised learning, significant progress has been made in multimodal semantic representation based on pre-trained models for vision and language. However, there is still room for improvement in visual semantic representation. The lack of spatial semantic coherence and vulnerability to noise makes it challenging for current pixel or patch-based methods to accurately extract complex scene boundaries. To this end, this paper develops superpixel as a comprehensive compact representation of learnable image data, which effectively reduces the number of visual primitives for subsequent processing by clustering perceptually similar pixels. To mine more precise topological relations, we propose a Multiscale Difference Graph Convolutional Network (MDGCN). It parses the entire image as a fine-to-coarse hierarchical structure of constituent visual patterns, and captures multiscale features by progressively merging adjacent superpixels as graph nodes. Moreover, we predict the differences between adjacent nodes through the graph structure, facilitating key information aggregation of graph nodes to reason actual semantic relations. Afterward, we design a multi-level fusion rule in a bottom-up manner to avoid understanding deviation by learning complementary spatial information at different regional scales. Our proposed method can be well applied to multiple downstream task learning. Extensive experiments demonstrate that our method is competitive with other state-of-the-art methods in visual reasoning. Our code will be released upon publication.

With the increased adaption of blockchain technologies, permissioned blockchains such as Hyperledger Fabric provide a robust ecosystem for developing production-grade decentralized applications. However, the additional latency between executing and committing transactions, due to Fabric's three-phase transaction lifecycle of Execute-Order-Validate (EOV), is a potential scalability bottleneck. The added latency increases the probability of concurrent updates on the same keys by different transactions, leading to transaction failures caused by Fabric's concurrency control mechanism. The transaction failures increase the application development complexity and decrease Fabric's throughput. Conflict-free Replicated Datatypes (CRDTs) provide a solution for merging and resolving conflicts in the presence of concurrent updates. In this work, we introduce FabricCRDT, an approach for integrating CRDTs to Fabric. Our evaluations show that in general, FabricCRDT offers higher throughput of successful transactions than Fabric, while successfully committing and merging all conflicting transactions without any failures.

Current graph systems can easily process billions of data, however when increased to exceed hundred billions, the performance decreases dramatically, time series data always be very huge, consequently computation on time series graphs still remains challenging nowadays. In current piece of work, we introduces SharkGraph, a (distributed file system) DFS-based time series graph system, used a novel storage structure (Time Series Graph Data File) TGF, By reading file stream to iterate graph computation, SharkGraph is able to execute batch graph query, simulation, data mining, or clustering algorithm on exceed hundred billions edge size industry graph. Through well defined experiments that shows SharkGraph performs well on large-scale graph processing, also can support time traversal for graphs, and recover state at any position in the timeline. By repeating experiments reported for existing distributed systems like GraphX, we demonstrate that SharkGraph can easily handle hundreds billions of data, rather than GraphX which met many problems such as memory issues and skewed distribution on graph traversal. Compared with other graph systems SharkGraph uses less memory and more efficiently to process the same graph.

We present VeriX, a first step towards verified explainability of machine learning models in safety-critical applications. Specifically, our sound and optimal explanations can guarantee prediction invariance against bounded perturbations. We utilise constraint solving techniques together with feature sensitivity ranking to efficiently compute these explanations. We evaluate our approach on image recognition benchmarks and a real-world scenario of autonomous aircraft taxiing.

As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.

Search engine has become a fundamental component in various web and mobile applications. Retrieving relevant documents from the massive datasets is challenging for a search engine system, especially when faced with verbose or tail queries. In this paper, we explore a vector space search framework for document retrieval. Specifically, we trained a deep semantic matching model so that each query and document can be encoded as a low dimensional embedding. Our model was trained based on BERT architecture. We deployed a fast k-nearest-neighbor index service for online serving. Both offline and online metrics demonstrate that our method improved retrieval performance and search quality considerably, particularly for tail

In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.

Deep learning applies multiple processing layers to learn representations of data with multiple levels of feature extraction. This emerging technique has reshaped the research landscape of face recognition since 2014, launched by the breakthroughs of Deepface and DeepID methods. Since then, deep face recognition (FR) technique, which leverages the hierarchical architecture to learn discriminative face representation, has dramatically improved the state-of-the-art performance and fostered numerous successful real-world applications. In this paper, we provide a comprehensive survey of the recent developments on deep FR, covering the broad topics on algorithms, data, and scenes. First, we summarize different network architectures and loss functions proposed in the rapid evolution of the deep FR methods. Second, the related face processing methods are categorized into two classes: `one-to-many augmentation' and `many-to-one normalization'. Then, we summarize and compare the commonly used databases for both model training and evaluation. Third, we review miscellaneous scenes in deep FR, such as cross-factor, heterogenous, multiple-media and industry scenes. Finally, potential deficiencies of the current methods and several future directions are highlighted.

Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.

北京阿比特科技有限公司