Within the multimodal field, the key to integrating vision and language lies in establishing a good alignment strategy. Recently, benefiting from the success of self-supervised learning, significant progress has been made in multimodal semantic representation based on pre-trained models for vision and language. However, there is still room for improvement in visual semantic representation. The lack of spatial semantic coherence and vulnerability to noise makes it challenging for current pixel or patch-based methods to accurately extract complex scene boundaries. To this end, this paper develops superpixel as a comprehensive compact representation of learnable image data, which effectively reduces the number of visual primitives for subsequent processing by clustering perceptually similar pixels. To mine more precise topological relations, we propose a Multiscale Difference Graph Convolutional Network (MDGCN). It parses the entire image as a fine-to-coarse hierarchical structure of constituent visual patterns, and captures multiscale features by progressively merging adjacent superpixels as graph nodes. Moreover, we predict the differences between adjacent nodes through the graph structure, facilitating key information aggregation of graph nodes to reason actual semantic relations. Afterward, we design a multi-level fusion rule in a bottom-up manner to avoid understanding deviation by learning complementary spatial information at different regional scales. Our proposed method can be well applied to multiple downstream task learning. Extensive experiments demonstrate that our method is competitive with other state-of-the-art methods in visual reasoning. Our code will be released upon publication.
In domain adaptation, covariate shift and label shift problems are two distinct and complementary tasks. In covariate shift adaptation where the differences in data distribution arise from variations in feature probabilities, existing approaches naturally address this problem based on \textit{feature probability matching} (\textit{FPM}). However, for label shift adaptation where the differences in data distribution stem solely from variations in class probability, current methods still use FPM on the $d$-dimensional feature space to estimate the class probability ratio on the one-dimensional label space. To address label shift adaptation more naturally and effectively, inspired by a new representation of the source domain's class probability, we propose a new framework called \textit{class probability matching} (\textit{CPM}) which matches two class probability functions on the one-dimensional label space to estimate the class probability ratio, fundamentally different from FPM operating on the $d$-dimensional feature space. Furthermore, by incorporating the kernel logistic regression into the CPM framework to estimate the conditional probability, we propose an algorithm called \textit{class probability matching using kernel methods} (\textit{CPMKM}) for label shift adaptation. From the theoretical perspective, we establish the optimal convergence rates of CPMKM with respect to the cross-entropy loss for multi-class label shift adaptation. From the experimental perspective, comparisons on real datasets demonstrate that CPMKM outperforms existing FPM-based and maximum-likelihood-based algorithms.
In modern days, the ability to carry out computations in parallel is key to efficient implementations of computationally intensive algorithms. This paper investigates the applicability of the previously proposed Augmented Island Resampling Particle Filter (AIRPF) -- an algorithm designed for parallel implementations -- to particle Markov Chain Monte Carlo (PMCMC). We show that AIRPF produces a non-negative unbiased estimator of the marginal likelihood and hence is suitable for PMCMC. We also prove stability properties, similar to those of the $\alpha$SMC algorithm, for AIRPF. This implies that the error of AIRPF can be bounded uniformly in time by controlling the effective number of filters, which in turn can be done by adaptively constraining the interactions between filters. We demonstrate the superiority of AIRPF over independent Bootstrap Particle Filters, not only numerically, but also theoretically. To this end, we extend the previously proposed collision analysis approach to derive an explicit expression for the variance of the marginal likelihood estimate. This expression admits exact evaluation of the variance in some simple scenarios as we shall also demonstrate.
Engineering design knowledge is embodied in natural language text through intricate placement of entities and relationships. Ontological constructs of design knowledge often limit the performances of NLP techniques to extract design knowledge. Also, large-language models could be less useful for generating and explicating design knowledge, as these are trained predominantly on common-sense text. In this article, we present the constituents of design knowledge based on empirical observations from patent documents. We obtain a sample of 33,881 patents and populate over 24 million facts from the sentences in these. We conduct Zipf distribution analyses using the frequencies of unique entities and relationships that are present in the facts thus populated. While the literal entities cannot be generalised from the sample of patents, the relationships largely capture attributes ('of'), structure ('in', 'with'), purpose ('to', 'for'), hierarchy ('include'), exemplification ('such as'), and behaviour ('to', 'from'). The analyses reveal that over half of entities and relationships could be generalised to 64 and 24 linguistic syntaxes respectively, while hierarchical relationships include 75 syntaxes. These syntaxes represent the linguistic basis of engineering design knowledge. We combine facts within each patent into a knowledge graph, from which we discover motifs that are statistically over-represented subgraph patterns. Across all patents in the sample, we identify eight patterns that could be simplified into sequence [->...->], aggregation [->...<-], and hierarchy [<-...->] that form the structural basis of engineering design knowledge. We propose regulatory precepts for concretising abstract entities and relationships within subgraphs, while also explicating hierarchical structures. These precepts could be useful for better construction and management of knowledge in a design environment.
Social media platforms, despite their value in promoting open discourse, are often exploited to spread harmful content. Current deep learning and natural language processing models used for detecting this harmful content overly rely on domain-specific terms affecting their capabilities to adapt to generalizable hate speech detection. This is because they tend to focus too narrowly on particular linguistic signals or the use of certain categories of words. Another significant challenge arises when platforms lack high-quality annotated data for training, leading to a need for cross-platform models that can adapt to different distribution shifts. Our research introduces a cross-platform hate speech detection model capable of being trained on one platform's data and generalizing to multiple unseen platforms. To achieve good generalizability across platforms, one way is to disentangle the input representations into invariant and platform-dependent features. We also argue that learning causal relationships, which remain constant across diverse environments, can significantly aid in understanding invariant representations in hate speech. By disentangling input into platform-dependent features (useful for predicting hate targets) and platform-independent features (used to predict the presence of hate), we learn invariant representations resistant to distribution shifts. These features are then used to predict hate speech across unseen platforms. Our extensive experiments across four platforms highlight our model's enhanced efficacy compared to existing state-of-the-art methods in detecting generalized hate speech.
Quantum Internet signifies a remarkable advancement in communication technology, harnessing the principles of quantum entanglement and superposition to facilitate unparalleled levels of security and efficient computations. Quantum communication can be achieved through the utilization of quantum entanglement. Through the exchange of entangled pairs between two entities, quantum communication becomes feasible, enabled by the process of quantum teleportation. Given the lossy nature of the channels and the exponential decoherence of the transmitted photons, a set of intermediate nodes can serve as quantum repeaters to perform entanglement swapping and directly entangle two distant nodes. Such quantum repeaters may be malicious and by setting up malicious entanglements, intermediate nodes can jeopardize the confidentiality of the quantum information exchanged between the two communication nodes. Hence, this paper proposes a quantum identity authentication protocol that protects quantum networks from malicious entanglements. Unlike the existing protocols, the proposed quantum authentication protocol does not require periodic refreshments of the shared secret keys. Simulation results demonstrate that the proposed protocol can detect malicious entanglements with a 100% probability after an average of 4 authentication rounds.
While there is an immense literature on Bayesian methods for clustering, the multiview case has received little attention. This problem focuses on obtaining distinct but statistically dependent clusterings in a common set of entities for different data types. For example, clustering patients into subgroups with subgroup membership varying according to the domain of the patient variables. A challenge is how to model the across-view dependence between the partitions of patients into subgroups. The complexities of the partition space make standard methods to model dependence, such as correlation, infeasible. In this article, we propose CLustering with Independence Centering (CLIC), a clustering prior that uses a single parameter to explicitly model dependence between clusterings across views. CLIC is induced by the product centered Dirichlet process (PCDP), a novel hierarchical prior that bridges between independent and equivalent partitions. We show appealing theoretic properties, provide a finite approximation and prove its accuracy, present a marginal Gibbs sampler for posterior computation, and derive closed form expressions for the marginal and joint partition distributions for the CLIC model. On synthetic data and in an application to epidemiology, CLIC accurately characterizes view-specific partitions while providing inference on the dependence level.
Label quality issues, such as noisy labels and imbalanced class distributions, have negative effects on model performance. Automatic reweighting methods identify problematic samples with label quality issues by recognizing their negative effects on validation samples and assigning lower weights to them. However, these methods fail to achieve satisfactory performance when the validation samples are of low quality. To tackle this, we develop Reweighter, a visual analysis tool for sample reweighting. The reweighting relationships between validation samples and training samples are modeled as a bipartite graph. Based on this graph, a validation sample improvement method is developed to improve the quality of validation samples. Since the automatic improvement may not always be perfect, a co-cluster-based bipartite graph visualization is developed to illustrate the reweighting relationships and support the interactive adjustments to validation samples and reweighting results. The adjustments are converted into the constraints of the validation sample improvement method to further improve validation samples. We demonstrate the effectiveness of Reweighter in improving reweighting results through quantitative evaluation and two case studies.
Modern communication systems need to fulfill multiple and often conflicting objectives at the same time. In particular, new applications require high reliability while operating at low transmit powers. Moreover, reliability constraints may vary over time depending on the current state of the system. One solution to address this problem is to use joint transmissions from a number of base stations (BSs) to meet the reliability requirements. However, this approach is inefficient when considering the overall total transmit power. In this work, we propose a reinforcement learning-based power allocation scheme for an unmanned aerial vehicle (UAV) communication system with varying communication reliability requirements. In particular, the proposed scheme aims to minimize the total transmit power of all BSs while achieving an outage probability that is less than a tolerated threshold. This threshold varies over time, e.g., when the UAV enters a critical zone with high-reliability requirements. Our results show that the proposed learning scheme uses dynamic power allocation to meet varying reliability requirements, thus effectively conserving energy.
Large, general purpose language models have demonstrated impressive performance across many different conversational domains. While multi-domain language models achieve low overall perplexity, their outputs are not guaranteed to stay within the domain of a given input prompt. This paper proposes domain privacy as a novel way to quantify how likely a conditional language model will leak across domains. We also develop policy functions based on token-level domain classification, and propose an efficient fine-tuning method to improve the trained model's domain privacy. Experiments on membership inference attacks show that our proposed method has comparable resiliency to methods adapted from recent literature on differentially private language models.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.