亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Engineering design knowledge is embodied in natural language text through intricate placement of entities and relationships. Ontological constructs of design knowledge often limit the performances of NLP techniques to extract design knowledge. Also, large-language models could be less useful for generating and explicating design knowledge, as these are trained predominantly on common-sense text. In this article, we present the constituents of design knowledge based on empirical observations from patent documents. We obtain a sample of 33,881 patents and populate over 24 million facts from the sentences in these. We conduct Zipf distribution analyses using the frequencies of unique entities and relationships that are present in the facts thus populated. While the literal entities cannot be generalised from the sample of patents, the relationships largely capture attributes ('of'), structure ('in', 'with'), purpose ('to', 'for'), hierarchy ('include'), exemplification ('such as'), and behaviour ('to', 'from'). The analyses reveal that over half of entities and relationships could be generalised to 64 and 24 linguistic syntaxes respectively, while hierarchical relationships include 75 syntaxes. These syntaxes represent the linguistic basis of engineering design knowledge. We combine facts within each patent into a knowledge graph, from which we discover motifs that are statistically over-represented subgraph patterns. Across all patents in the sample, we identify eight patterns that could be simplified into sequence [->...->], aggregation [->...<-], and hierarchy [<-...->] that form the structural basis of engineering design knowledge. We propose regulatory precepts for concretising abstract entities and relationships within subgraphs, while also explicating hierarchical structures. These precepts could be useful for better construction and management of knowledge in a design environment.

相關內容

通過(guo)學(xue)習、實踐或探索所獲得(de)的認(ren)識、判斷或技能。

Plagiarism is a pressing concern, even more so with the availability of large language models. Existing plagiarism detection systems reliably find copied and moderately reworded text but fail for idea plagiarism, especially in mathematical science, which heavily uses formal mathematical notation. We make two contributions. First, we establish a taxonomy of mathematical content reuse by annotating potentially plagiarised 122 scientific document pairs. Second, we analyze the best-performing approaches to detect plagiarism and mathematical content similarity on the newly established taxonomy. We found that the best-performing methods for plagiarism and math content similarity achieve an overall detection score (PlagDet) of 0.06 and 0.16, respectively. The best-performing methods failed to detect most cases from all seven newly established math similarity types. Outlined contributions will benefit research in plagiarism detection systems, recommender systems, question-answering systems, and search engines. We make our experiment's code and annotated dataset available to the community: //github.com/gipplab/Taxonomy-of-Mathematical-Plagiarism

The increasing versatility of language models LMs has given rise to a new class of benchmarks that comprehensively assess a broad range of capabilities. Such benchmarks are associated with massive computational costs reaching thousands of GPU hours per model. However the efficiency aspect of these evaluation efforts had raised little discussion in the literature. In this work we present the problem of Efficient Benchmarking namely intelligently reducing the computation costs of LM evaluation without compromising reliability. Using the HELM benchmark as a test case we investigate how different benchmark design choices affect the computation-reliability tradeoff. We propose to evaluate the reliability of such decisions by using a new measure Decision Impact on Reliability DIoR for short. We find for example that the current leader on HELM may change by merely removing a low-ranked model from the benchmark and observe that a handful of examples suffice to obtain the correct benchmark ranking. Conversely a slightly different choice of HELM scenarios varies ranking widely. Based on our findings we outline a set of concrete recommendations for more efficient benchmark design and utilization practices leading to dramatic cost savings with minimal loss of benchmark reliability often reducing computation by x100 or more.

Large language models are becoming increasingly practical for translating code across programming languages, a process known as $transpiling$. Even though automated transpilation significantly boosts developer productivity, a key concern is whether the generated code is correct. Existing work initially used manually crafted test suites to test the translations of a small corpus of programs; these test suites were later automated. In contrast, we devise the first approach for automated, functional, property-based testing of code translation models. Our general, user-provided specifications about the transpiled code capture a range of properties, from purely syntactic to purely semantic ones. As shown by our experiments, this approach is very effective in detecting property violations in popular code translation models, and therefore, in evaluating model quality with respect to given properties. We also go a step further and explore the usage scenario where a user simply aims to obtain a correct translation of some code with respect to certain properties without necessarily being concerned about the overall quality of the model. To this purpose, we develop the first property-guided search procedure for code translation models, where a model is repeatedly queried with slightly different parameters to produce alternative and potentially more correct translations. Our results show that this search procedure helps to obtain significantly better code translations.

While pretrained language models (PLMs) have been shown to possess a plethora of linguistic knowledge, the existing body of research has largely neglected extralinguistic knowledge, which is generally difficult to obtain by pretraining on text alone. Here, we contribute to closing this gap by examining geolinguistic knowledge, i.e., knowledge about geographic variation in language. We introduce geoadaptation, an intermediate training step that couples language modeling with geolocation prediction in a multi-task learning setup. We geoadapt four PLMs, covering language groups from three geographic areas, and evaluate them on five different tasks: fine-tuned (i.e., supervised) geolocation prediction, zero-shot (i.e., unsupervised) geolocation prediction, fine-tuned language identification, zero-shot language identification, and zero-shot prediction of dialect features. Geoadaptation is very successful at injecting geolinguistic knowledge into the PLMs: the geoadapted PLMs consistently outperform PLMs adapted using only language modeling (by especially wide margins on zero-shot prediction tasks), and we obtain new state-of-the-art results on two benchmarks for geolocation prediction and language identification. Furthermore, we show that the effectiveness of geoadaptation stems from its ability to geographically retrofit the representation space of the PLMs.

Team interactions are often multisensory, requiring members to pick up on verbal, visual, spatial and body language cues. Multimodal research, research that captures multiple modes of communication such as audio and visual signals, is therefore integral to understanding these multisensory group communication processes. This type of research has gained traction in biomedical engineering and neuroscience, but it is unclear the extent to which communication and management researchers conduct multimodal research. Our study finds that despite its' utility, multimodal research is underutilized in the communication and management literature's. This paper then covers introductory guidelines for creating new multimodal research including considerations for sensors, data integration and ethical considerations.

Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at //github.com/hyintell/awesome-refreshing-llms

Transformer, an attention-based encoder-decoder architecture, has revolutionized the field of natural language processing. Inspired by this significant achievement, some pioneering works have recently been done on adapting Transformerliked architectures to Computer Vision (CV) fields, which have demonstrated their effectiveness on various CV tasks. Relying on competitive modeling capability, visual Transformers have achieved impressive performance on multiple benchmarks such as ImageNet, COCO, and ADE20k as compared with modern Convolution Neural Networks (CNN). In this paper, we have provided a comprehensive review of over one hundred different visual Transformers for three fundamental CV tasks (classification, detection, and segmentation), where a taxonomy is proposed to organize these methods according to their motivations, structures, and usage scenarios. Because of the differences in training settings and oriented tasks, we have also evaluated these methods on different configurations for easy and intuitive comparison instead of only various benchmarks. Furthermore, we have revealed a series of essential but unexploited aspects that may empower Transformer to stand out from numerous architectures, e.g., slack high-level semantic embeddings to bridge the gap between visual and sequential Transformers. Finally, three promising future research directions are suggested for further investment.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

北京阿比特科技有限公司