亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we introduce a framework that enables the use of Syndrome-Based Neural Decoders (SBND) for high-order Bit-Interleaved Coded Modulations (BICM). To this end, we extend the previous results on SBND, for which the validity is limited to Binary Phase-Shift Keying (BPSK), by means of a theoretical channel modeling of the bit Log-Likelihood Ratio (bit-LLR) induced outputs. We implement the proposed SBND system for two polar codes $(64,32)$ and $(128,64)$, using a Recurrent Neural Network (RNN) and a Transformer-based architecture. Both implementations are compared in Bit Error Rate (BER) performance and computational complexity.

相關內容

The Multiple Traveling Salesman Problem (MTSP) with a single depot is a generalization of the well-known Traveling Salesman Problem (TSP) that involves an additional parameter, namely, the number of salesmen. In the MTSP, several salesmen at the depot need to visit a set of interconnected targets, such that each target is visited precisely once by at most one salesman while minimizing the total length of their tours. An equally important variant of the MTSP, the min-max MTSP, aims to distribute the workload (length of the individual tours) among salesmen by requiring the longest tour of all the salesmen to be as short as possible, i.e., minimizing the maximum tour length among all salesmen. The min-max MTSP appears in real-life applications to ensure a good balance of workloads for the salesmen. It is known in the literature that the min-max MTSP is notoriously difficult to solve to optimality due to the poor lower bounds its linear relaxations provide. In this paper, we formulate two novel parametric variants of the MTSP called the "fair-MTSP". One variant is formulated as a Mixed-Integer Second Order Cone Program (MISOCP), and the other as a Mixed Integer Linear Program (MILP). Both focus on enforcing the workloads for the salesmen to be equitable, i.e., the distribution of tour lengths for the salesmen to be fair while minimizing the total cost of their tours. We present algorithms to solve the two variants of the fair-MTSP to global optimality and computational results on benchmark and real-world test instances that make a case for fair-MTSP as a viable alternative to the min-max MTSP.

The evolving paradigm of Large Language Model-based Recom- mendation (LLMRec) customizes Large Language Models (LLMs) through parameter-efficient fine-tuning (PEFT) using recommenda- tion data. The inclusion of user data in LLMs raises privacy concerns. To protect users, the unlearning process in LLMRec, specifically removing unusable data (e.g., historical behaviors) from established LLMRec models, becomes crucial. However, existing unlearning methods are insufficient for the unique characteristics of LLM- Rec, mainly due to high computational costs or incomplete data erasure. In this study, we introduce the Adapter Partition and Ag- gregation (APA) framework for exact and efficient unlearning while maintaining recommendation performance. APA achieves this by establishing distinct adapters for partitioned training data shards and retraining only the adapters impacted by unusable data for un- learning. To preserve recommendation performance and mitigate considerable inference costs, APA employs parameter-level adapter aggregation with sample-adaptive attention for individual testing samples. Extensive experiments substantiate the effectiveness and efficiency of our proposed framework

In the current artificial intelligence (AI) era, the scale and quality of the dataset play a crucial role in training a high-quality AI model. However, good data is not a free lunch and is always hard to access due to privacy regulations like the General Data Protection Regulation (GDPR). A potential solution is to release a synthetic dataset with a similar distribution to that of the private dataset. Nevertheless, in some scenarios, it has been found that the attributes needed to train an AI model belong to different parties, and they cannot share the raw data for synthetic data publication due to privacy regulations. In PETS 2023, Xue et al. proposed the first generative adversary network-based model, VertiGAN, for vertically partitioned data publication. However, after thoroughly investigating, we found that VertiGAN is less effective in preserving the correlation among the attributes of different parties. This article proposes a Vertical Federated Learning-based Generative Adversarial Network, VFLGAN, for vertically partitioned data publication to address the above issues. Our experimental results show that compared with VertiGAN, VFLGAN significantly improves the quality of synthetic data. Taking the MNIST dataset as an example, the quality of the synthetic dataset generated by VFLGAN is 3.2 times better than that generated by VertiGAN w.r.t. the Fr\'echet Distance. We also designed a more efficient and effective Gaussian mechanism for the proposed VFLGAN to provide the synthetic dataset with a differential privacy guarantee. On the other hand, differential privacy only gives the upper bound of the worst-case privacy guarantee. This article also proposes a practical auditing scheme that applies membership inference attacks to estimate privacy leakage through the synthetic dataset.

Virtual Reality (VR) has emerged as a promising tool for enhancing social skills and emotional well-being in individuals with Autism Spectrum Disorder (ASD). Through a technical exploration, this study employs a multiplayer serious gaming environment within VR, engaging 34 individuals diagnosed with ASD and employing high-precision biosensors for a comprehensive view of the participants' arousal and responses during the VR sessions. Participants were subjected to a series of 3 virtual scenarios designed in collaboration with stakeholders and clinical experts to promote socio-cognitive skills and emotional regulation in a controlled and structured virtual environment. We combined the framework with wearable non-invasive sensors for bio-signal acquisition, focusing on the collection of heart rate variability, and respiratory patterns to monitor participants behaviors. Further, behavioral assessments were conducted using observation and semi-structured interviews, with the data analyzed in conjunction with physiological measures to identify correlations and explore digital-intervention efficacy. Preliminary analysis revealed significant correlations between physiological responses and behavioral outcomes, indicating the potential of physiological feedback to enhance VR-based interventions for ASD. The study demonstrated the feasibility of using real-time data to adapt virtual scenarios, suggesting a promising avenue to support personalized therapy. The integration of quantitative physiological feedback into digital platforms represents a forward step in the personalized intervention for ASD. By leveraging real-time data to adjust therapeutic content, this approach promises to enhance the efficacy and engagement of digital-based therapies.

In this paper, we introduce a novel Convolution-based Probability Gradient (CPG) loss for semantic segmentation. It employs convolution kernels similar to the Sobel operator, capable of computing the gradient of pixel intensity in an image. This enables the computation of gradients for both ground-truth and predicted category-wise probabilities. It enhances network performance by maximizing the similarity between these two probability gradients. Moreover, to specifically enhance accuracy near the object's boundary, we extract the object boundary based on the ground-truth probability gradient and exclusively apply the CPG loss to pixels belonging to boundaries. CPG loss proves to be highly convenient and effective. It establishes pixel relationships through convolution, calculating errors from a distinct dimension compared to pixel-wise loss functions such as cross-entropy loss. We conduct qualitative and quantitative analyses to evaluate the impact of the CPG loss on three well-established networks (DeepLabv3-Resnet50, HRNetV2-OCR, and LRASPP_MobileNet_V3_Large) across three standard segmentation datasets (Cityscapes, COCO-Stuff, ADE20K). Our extensive experimental results consistently and significantly demonstrate that the CPG loss enhances the mean Intersection over Union.

State-of-the-art LiDAR calibration frameworks mainly use non-probabilistic registration methods such as Iterative Closest Point (ICP) and its variants. These methods suffer from biased results due to their pair-wise registration procedure as well as their sensitivity to initialization and parameterization. This often leads to misalignments in the calibration process. Probabilistic registration methods compensate for these drawbacks by specifically modeling the probabilistic nature of the observations. This paper presents GMMCalib, an automatic target-based extrinsic calibration approach for multi-LiDAR systems. Using an implementation of a Gaussian Mixture Model (GMM)-based registration method that allows joint registration of multiple point clouds, this data-driven approach is compared to ICP algorithms. We perform simulation experiments using the digital twin of the EDGAR research vehicle and validate the results in a real-world environment. We also address the local minima problem of local registration methods for extrinsic sensor calibration and use a distance-based metric to evaluate the calibration results. Our results show that an increase in robustness against sensor miscalibrations can be achieved by using GMM-based registration algorithms. The code is open source and available on GitHub.

In this work, we are interested in automated methods for knowledge graph creation (KGC) from input text. Progress on large language models (LLMs) has prompted a series of recent works applying them to KGC, e.g., via zero/few-shot prompting. Despite successes on small domain-specific datasets, these models face difficulties scaling up to text common in many real-world applications. A principal issue is that in prior methods, the KG schema has to be included in the LLM prompt to generate valid triplets; larger and more complex schema easily exceed the LLMs' context window length. To address this problem, we propose a three-phase framework named Extract-Define-Canonicalize (EDC): open information extraction followed by schema definition and post-hoc canonicalization. EDC is flexible in that it can be applied to settings where a pre-defined target schema is available and when it is not; in the latter case, it constructs a schema automatically and applies self-canonicalization. To further improve performance, we introduce a trained component that retrieves schema elements relevant to the input text; this improves the LLMs' extraction performance in a retrieval-augmented generation-like manner. We demonstrate on three KGC benchmarks that EDC is able to extract high-quality triplets without any parameter tuning and with significantly larger schemas compared to prior works.

The increasing adoption of WebAssembly (Wasm) for performance-critical and security-sensitive tasks drives the demand for WebAssembly program comprehension and reverse engineering. Recent studies have introduced machine learning (ML)-based WebAssembly reverse engineering tools. Yet, the generalization of task-specific ML solutions remains challenging, because their effectiveness hinges on the availability of an ample supply of high-quality task-specific labeled data. Moreover, previous works overlook the high-level semantics present in source code and its documentation. Acknowledging the abundance of available source code with documentation, which can be compiled into WebAssembly, we propose to learn representations of them concurrently and harness their mutual relationships for effective WebAssembly reverse engineering. In this paper, we present WasmRev, the first multi-modal pre-trained language model for WebAssembly reverse engineering. WasmRev is pre-trained using self-supervised learning on a large-scale multi-modal corpus encompassing source code, code documentation and the compiled WebAssembly, without requiring labeled data. WasmRev incorporates three tailored multi-modal pre-training tasks to capture various characteristics of WebAssembly and cross-modal relationships. WasmRev is only trained once to produce general-purpose representations that can broadly support WebAssembly reverse engineering tasks through few-shot fine-tuning with much less labeled data, improving data efficiency. We fine-tune WasmRev onto three important reverse engineering tasks: type recovery, function purpose identification and WebAssembly summarization. Our results show that WasmRev pre-trained on the corpus of multi-modal samples establishes a robust foundation for these tasks, achieving high task accuracy and outperforming the state-of-the-art ML methods for WebAssembly reverse engineering.

Solving large-scale multistage stochastic programming (MSP) problems poses a significant challenge as commonly used stagewise decomposition algorithms, including stochastic dual dynamic programming (SDDP), face growing time complexity as the subproblem size and problem count increase. Traditional approaches approximate the value functions as piecewise linear convex functions by incrementally accumulating subgradient cutting planes from the primal and dual solutions of stagewise subproblems. Recognizing these limitations, we introduce TranSDDP, a novel Transformer-based stagewise decomposition algorithm. This innovative approach leverages the structural advantages of the Transformer model, implementing a sequential method for integrating subgradient cutting planes to approximate the value function. Through our numerical experiments, we affirm TranSDDP's effectiveness in addressing MSP problems. It efficiently generates a piecewise linear approximation for the value function, significantly reducing computation time while preserving solution quality, thus marking a promising progression in the treatment of large-scale multistage stochastic programming problems.

This work aims to provide an engagement decision support tool for Beyond Visual Range (BVR) air combat in the context of Defensive Counter Air (DCA) missions. In BVR air combat, engagement decision refers to the choice of the moment the pilot engages a target by assuming an offensive stance and executing corresponding maneuvers. To model this decision, we use the Brazilian Air Force's Aerospace Simulation Environment (\textit{Ambiente de Simula\c{c}\~ao Aeroespacial - ASA} in Portuguese), which generated 3,729 constructive simulations lasting 12 minutes each and a total of 10,316 engagements. We analyzed all samples by an operational metric called the DCA index, which represents, based on the experience of subject matter experts, the degree of success in this type of mission. This metric considers the distances of the aircraft of the same team and the opposite team, the point of Combat Air Patrol, and the number of missiles used. By defining the engagement status right before it starts and the average of the DCA index throughout the engagement, we create a supervised learning model to determine the quality of a new engagement. An algorithm based on decision trees, working with the XGBoost library, provides a regression model to predict the DCA index with a coefficient of determination close to 0.8 and a Root Mean Square Error of 0.05 that can furnish parameters to the BVR pilot to decide whether or not to engage. Thus, using data obtained through simulations, this work contributes by building a decision support system based on machine learning for BVR air combat.

北京阿比特科技有限公司