The evolving paradigm of Large Language Model-based Recom- mendation (LLMRec) customizes Large Language Models (LLMs) through parameter-efficient fine-tuning (PEFT) using recommenda- tion data. The inclusion of user data in LLMs raises privacy concerns. To protect users, the unlearning process in LLMRec, specifically removing unusable data (e.g., historical behaviors) from established LLMRec models, becomes crucial. However, existing unlearning methods are insufficient for the unique characteristics of LLM- Rec, mainly due to high computational costs or incomplete data erasure. In this study, we introduce the Adapter Partition and Ag- gregation (APA) framework for exact and efficient unlearning while maintaining recommendation performance. APA achieves this by establishing distinct adapters for partitioned training data shards and retraining only the adapters impacted by unusable data for un- learning. To preserve recommendation performance and mitigate considerable inference costs, APA employs parameter-level adapter aggregation with sample-adaptive attention for individual testing samples. Extensive experiments substantiate the effectiveness and efficiency of our proposed framework
Recent advances in Foundation Models such as Large Language Models (LLMs) have propelled them to the forefront of Recommender Systems (RS). Despite their utility, there is a growing concern that LLMs might inadvertently perpetuate societal stereotypes, resulting in unfair recommendations. Since fairness is critical for RS as many users take it for decision-making and demand fulfillment, this paper focuses on user-side fairness for LLM-based recommendation where the users may require a recommender system to be fair on specific sensitive features such as gender or age. In this paper, we dive into the extent of unfairness exhibited by LLM-based recommender models based on both T5 and LLaMA backbones, and discuss appropriate methods for promoting equitable treatment of users in LLM-based recommendation models. We introduce a novel Counterfactually-Fair-Prompt (CFP) method towards Unbiased Foundation mOdels (UFO) for fairness-aware LLM-based recommendation. Experiments are conducted on two real-world datasets, MovieLens-1M and Insurance, and compared with both matching-based and sequential-based fairness-aware recommendation models. Results show that CFP achieves better recommendation performance with a high level of fairness. Data and code are open-sourced at //github.com/agiresearch/UP5.
Recent advancements in Multi-modal Large Language Models (MLLMs) have significantly improved their performance in tasks combining vision and language. However, challenges persist in detailed multi-modal understanding, comprehension of complex tasks, and reasoning over multi-modal information. This paper introduces MMCTAgent, a novel multi-modal critical thinking agent framework designed to address the inherent limitations of current MLLMs in complex visual reasoning tasks. Inspired by human cognitive processes and critical thinking, MMCTAgent iteratively analyzes multi-modal information, decomposes queries, plans strategies, and dynamically evolves its reasoning. Additionally, MMCTAgent incorporates critical thinking elements such as verification of final answers and self-reflection through a novel approach that defines a vision-based critic and identifies task-specific evaluation criteria, thereby enhancing its decision-making abilities. Through rigorous evaluations across various image and video understanding benchmarks, we demonstrate that MMCTAgent (with and without the critic) outperforms both foundational MLLMs and other tool-augmented pipelines.
Deep Neural Networks (DNNs) are known to be vulnerable to backdoor attacks, posing concerning threats to their reliable deployment. Recent research reveals that backdoors can be erased from infected DNNs by pruning a specific group of neurons, while how to effectively identify and remove these backdoor-associated neurons remains an open challenge. In this paper, we investigate the correlation between backdoor behavior and neuron magnitude, and find that backdoor neurons deviate from the magnitude-saliency correlation of the model. The deviation inspires us to propose a Magnitude-based Neuron Pruning (MNP) method to detect and prune backdoor neurons. Specifically, MNP uses three magnitude-guided objective functions to manipulate the magnitude-saliency correlation of backdoor neurons, thus achieving the purpose of exposing backdoor behavior, eliminating backdoor neurons and preserving clean neurons, respectively. Experiments show our pruning strategy achieves state-of-the-art backdoor defense performance against a variety of backdoor attacks with a limited amount of clean data, demonstrating the crucial role of magnitude for guiding backdoor defenses.
We present RoboArm-NMP, a learning and evaluation environment that allows simple and thorough evaluations of Neural Motion Planning (NMP) algorithms, focused on robotic manipulators. Our Python-based environment provides baseline implementations for learning control policies (either supervised or reinforcement learning based), a simulator based on PyBullet, data of solved instances using a classical motion planning solver, various representation learning methods for encoding the obstacles, and a clean interface between the learning and planning frameworks. Using RoboArm-NMP, we compare several prominent NMP design points, and demonstrate that the best methods mostly succeed in generalizing to unseen goals in a scene with fixed obstacles, but have difficulty in generalizing to unseen obstacle configurations, suggesting focus points for future research.
The rapid advancements in Large Language Models (LLMs) have revolutionized natural language processing, with GPTs, customized versions of ChatGPT available on the GPT Store, emerging as a prominent technology for specific domains and tasks. To support academic research on GPTs, we introduce GPTZoo, a large-scale dataset comprising 730,420 GPT instances. Each instance includes rich metadata with 21 attributes describing its characteristics, as well as instructions, knowledge files, and third-party services utilized during its development. GPTZoo aims to provide researchers with a comprehensive and readily available resource to study the real-world applications, performance, and potential of GPTs. To facilitate efficient retrieval and analysis of GPTs, we also developed an automated command-line interface (CLI) that supports keyword-based searching of the dataset. To promote open research and innovation, the GPTZoo dataset will undergo continuous updates, and we are granting researchers public access to GPTZoo and its associated tools.
We present GSDeformer, a method that achieves free-form deformation on 3D Gaussian Splatting(3DGS) without requiring any architectural changes. Our method extends cage-based deformation, a traditional mesh deformation method, to 3DGS. This is done by converting 3DGS into a novel proxy point cloud representation, where its deformation can be used to infer the transformations to apply on the 3D gaussians making up 3DGS. We also propose an automatic cage construction algorithm for 3DGS to minimize manual work. Our method does not modify the underlying architecture of 3DGS. Therefore, any existing trained vanilla 3DGS can be easily edited by our method. We compare the deformation capability of our method against other existing methods, demonstrating the ease of use and comparable quality of our method, despite being more direct and thus easier to integrate with other concurrent developments on 3DGS.
This work introduces Neural Elevations Models (NEMos), which adapt Neural Radiance Fields to a 2.5D continuous and differentiable terrain model. In contrast to traditional terrain representations such as digital elevation models, NEMos can be readily generated from imagery, a low-cost data source, and provide a lightweight representation of terrain through an implicit continuous and differentiable height field. We propose a novel method for jointly training a height field and radiance field within a NeRF framework, leveraging quantile regression. Additionally, we introduce a path planning algorithm that performs gradient-based optimization of a continuous cost function for minimizing distance, slope changes, and control effort, enabled by differentiability of the height field. We perform experiments on simulated and real-world terrain imagery, demonstrating NEMos ability to generate high-quality reconstructions and produce smoother paths compared to discrete path planning methods. Future work will explore the incorporation of features and semantics into the height field, creating a generalized terrain model.
Network Intrusion Detection Systems (NIDSs) detect intrusion attacks in network traffic. In particular, machine-learning-based NIDSs have attracted attention because of their high detection rates of unknown attacks. A distributed processing framework for machine-learning-based NIDSs employing a scalable distributed stream processing system has been proposed in the literature. However, its performance, when machine-learning-based classifiers are implemented has not been comprehensively evaluated. In this study, we implement five representative classifiers (Decision Tree, Random Forest, Naive Bayes, SVM, and kNN) based on this framework and evaluate their throughput and latency. By conducting the experimental measurements, we investigate the difference in the processing performance among these classifiers and the bottlenecks in the processing performance of the framework.
Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.