亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, speech separation (SS) task has achieved remarkable progress driven by deep learning technique. However, it is still challenging to separate target signals from noisy mixture, as neural model is vulnerable to assign background noise to each speaker. In this paper, we propose a noise-aware SS method called NASS, which aims to improve the speech quality of separated signals in noisy conditions. Specifically, NASS views background noise as an independent speaker and predicts it with other speakers in a mask-based manner. Then we conduct patch-wise contrastive learning on feature level to minimize the mutual information between the predicted noise-speaker and other speakers, which suppresses the noise information in separated signals. The experimental results show that NASS effectively improves the noise-robustness for different mask-based separation backbones with less than 0.1M parameter increase. Furthermore, SI-SNRi results demonstrate that NASS achieves state-of-the-art performance on WHAM! dataset.

相關內容

Multi-task learning has emerged as a powerful machine learning paradigm for integrating data from multiple sources, leveraging similarities between tasks to improve overall model performance. However, the application of multi-task learning to real-world settings is hindered by data-sharing constraints, especially in healthcare settings. To address this challenge, we propose a flexible multi-task learning framework utilizing summary statistics from various sources. Additionally, we present an adaptive parameter selection approach based on a variant of Lepski's method, allowing for data-driven tuning parameter selection when only summary statistics are available. Our systematic non-asymptotic analysis characterizes the performance of the proposed methods under various regimes of the sample complexity and overlap. We demonstrate our theoretical findings and the performance of the method through extensive simulations. This work offers a more flexible tool for training related models across various domains, with practical implications in genetic risk prediction and many other fields.

Deep neural networks (DNNs), despite their impressive ability to generalize over-capacity networks, often rely heavily on malignant bias as shortcuts instead of task-related information for discriminative tasks. To address this problem, recent studies utilize auxiliary information related to the bias, which is rarely obtainable in practice, or sift through a handful of bias-free samples for debiasing. However, the success of these methods is not always guaranteed due to the unfulfilled presumptions. In this paper, we propose a novel method, Contrastive Debiasing via Generative Bias-transformation (CDvG), which works without explicit bias labels or bias-free samples. Motivated by our observation that not only discriminative models but also image translation models tend to focus on the malignant bias, CDvG employs an image translation model to transform one bias mode into another while preserving the task-relevant information. Additionally, the bias-transformed views are set against each other through contrastive learning to learn bias-invariant representations. Our method demonstrates superior performance compared to prior approaches, especially when bias-free samples are scarce or absent. Furthermore, CDvG can be integrated with the methods that focus on bias-free samples in a plug-and-play manner for additional enhancements, as demonstrated by diverse experimental results.

Monocular 3D object detection is a low-cost but challenging task, as it requires generating accurate 3D localization solely from a single image input. Recent developed depth-assisted methods show promising results by using explicit depth maps as intermediate features, which are either precomputed by monocular depth estimation networks or jointly evaluated with 3D object detection. However, inevitable errors from estimated depth priors may lead to misaligned semantic information and 3D localization, hence resulting in feature smearing and suboptimal predictions. To mitigate this issue, we propose ADD, an Attention-based Depth knowledge Distillation framework with 3D-aware positional encoding. Unlike previous knowledge distillation frameworks that adopt stereo- or LiDAR-based teachers, we build up our teacher with identical architecture as the student but with extra ground-truth depth as input. Credit to our teacher design, our framework is seamless, domain-gap free, easily implementable, and is compatible with object-wise ground-truth depth. Specifically, we leverage intermediate features and responses for knowledge distillation. Considering long-range 3D dependencies, we propose \emph{3D-aware self-attention} and \emph{target-aware cross-attention} modules for student adaptation. Extensive experiments are performed to verify the effectiveness of our framework on the challenging KITTI 3D object detection benchmark. We implement our framework on three representative monocular detectors, and we achieve state-of-the-art performance with no additional inference computational cost relative to baseline models. Our code is available at //github.com/rockywind/ADD.

Federated learning (FL) enables multiple clients to collaboratively train deep learning models while considering sensitive local datasets' privacy. However, adversaries can manipulate datasets and upload models by injecting triggers for federated backdoor attacks (FBA). Existing defense strategies against FBA consider specific and limited attacker models, and a sufficient amount of noise to be injected only mitigates rather than eliminates FBA. To address these deficiencies, we introduce a Flexible Federated Backdoor Defense Framework (Fedward) to ensure the elimination of adversarial backdoors. We decompose FBA into various attacks, and design amplified magnitude sparsification (AmGrad) and adaptive OPTICS clustering (AutoOPTICS) to address each attack. Meanwhile, Fedward uses the adaptive clipping method by regarding the number of samples in the benign group as constraints on the boundary. This ensures that Fedward can maintain the performance for the Non-IID scenario. We conduct experimental evaluations over three benchmark datasets and thoroughly compare them to state-of-the-art studies. The results demonstrate the promising defense performance from Fedward, moderately improved by 33% $\sim$ 75 in clustering defense methods, and 96.98%, 90.74%, and 89.8% for Non-IID to the utmost extent for the average FBA success rate over MNIST, FMNIST, and CIFAR10, respectively.

Federated learning (FL) has emerged as a promising approach for training machine learning models on decentralized data without compromising data privacy. In this paper, we propose a FL algorithm for object detection in quality inspection tasks using YOLOv5 as the object detection algorithm and Federated Averaging (FedAvg) as the FL algorithm. We apply this approach to a manufacturing use-case where multiple factories/clients contribute data for training a global object detection model while preserving data privacy on a non-IID dataset. Our experiments demonstrate that our FL approach achieves better generalization performance on the overall clients' test dataset and generates improved bounding boxes around the objects compared to models trained using local clients' datasets. This work showcases the potential of FL for quality inspection tasks in the manufacturing industry and provides valuable insights into the performance and feasibility of utilizing YOLOv5 and FedAvg for federated object detection.

Heterogeneous federated multi-task learning (HFMTL) is a federated learning technique that combines heterogeneous tasks of different clients to achieve more accurate, comprehensive predictions. In real-world applications, visual and natural language tasks typically require large-scale models to extract high-level abstract features. However, large-scale models cannot be directly applied to existing federated multi-task learning methods. Existing HFML methods also disregard the impact of gradient conflicts on multi-task optimization during the federated aggregation process. In this work, we propose an innovative framework called FedBone, which enables the construction of large-scale models with better generalization from the perspective of server-client split learning and gradient projection. We split the entire model into two components: a large-scale general model (referred to as the general model) on the cloud server and multiple task-specific models (referred to as the client model) on edge clients, solving the problem of insufficient computing power on edge clients. The conflicting gradient projection technique is used to enhance the generalization of the large-scale general model between different tasks. The proposed framework is evaluated on two benchmark datasets and a real ophthalmic dataset. Comprehensive results demonstrate that FedBone efficiently adapts to heterogeneous local tasks of each client and outperforms existing federated learning algorithms in most dense prediction and classification tasks with off-the-shelf computational resources on the client side.

Partially-supervised instance segmentation is a task which requests segmenting objects from novel unseen categories via learning on limited seen categories with annotated masks thus eliminating demands of heavy annotation burden. The key to addressing this task is to build an effective class-agnostic mask segmentation model. Unlike previous methods that learn such models only on seen categories, in this paper, we propose a new method, named ContrastMask, which learns a mask segmentation model on both seen and unseen categories under a unified pixel-level contrastive learning framework. In this framework, annotated masks of seen categories and pseudo masks of unseen categories serve as a prior for contrastive learning, where features from the mask regions (foreground) are pulled together, and are contrasted against those from the background, and vice versa. Through this framework, feature discrimination between foreground and background is largely improved, facilitating learning of the class-agnostic mask segmentation model. Exhaustive experiments on the COCO dataset demonstrate the superiority of our method, which outperforms previous state-of-the-arts.

It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.

In this paper, we propose a one-stage online clustering method called Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning. To be specific, for a given dataset, the positive and negative instance pairs are constructed through data augmentations and then projected into a feature space. Therein, the instance- and cluster-level contrastive learning are respectively conducted in the row and column space by maximizing the similarities of positive pairs while minimizing those of negative ones. Our key observation is that the rows of the feature matrix could be regarded as soft labels of instances, and accordingly the columns could be further regarded as cluster representations. By simultaneously optimizing the instance- and cluster-level contrastive loss, the model jointly learns representations and cluster assignments in an end-to-end manner. Extensive experimental results show that CC remarkably outperforms 17 competitive clustering methods on six challenging image benchmarks. In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19\% (39\%) performance improvement compared with the best baseline.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

北京阿比特科技有限公司