亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The optimized certainty equivalent (OCE) is a family of risk measures that cover important examples such as entropic risk, conditional value-at-risk and mean-variance models. In this paper, we propose a new episodic risk-sensitive reinforcement learning formulation based on tabular Markov decision processes with recursive OCEs. We design an efficient learning algorithm for this problem based on value iteration and upper confidence bound. We derive an upper bound on the regret of the proposed algorithm, and also establish a minimax lower bound. Our bounds show that the regret rate achieved by our proposed algorithm has optimal dependence on the number of episodes and the number of actions.

相關內容

In model-based reinforcement learning for safety-critical control systems, it is important to formally certify system properties (e.g., safety, stability) under the learned controller. However, as existing methods typically apply formal verification \emph{after} the controller has been learned, it is sometimes difficult to obtain any certificate, even after many iterations between learning and verification. To address this challenge, we propose a framework that jointly conducts reinforcement learning and formal verification by formulating and solving a novel bilevel optimization problem, which is differentiable by the gradients from the value function and certificates. Experiments on a variety of examples demonstrate the significant advantages of our framework over the model-based stochastic value gradient (SVG) method and the model-free proximal policy optimization (PPO) method in finding feasible controllers with barrier functions and Lyapunov functions that ensure system safety and stability.

In this paper, we address the following problem: Given an offline demonstration dataset from an imperfect expert, what is the best way to leverage it to bootstrap online learning performance in MDPs. We first propose an Informed Posterior Sampling-based RL (iPSRL) algorithm that uses the offline dataset, and information about the expert's behavioral policy used to generate the offline dataset. Its cumulative Bayesian regret goes down to zero exponentially fast in N, the offline dataset size if the expert is competent enough. Since this algorithm is computationally impractical, we then propose the iRLSVI algorithm that can be seen as a combination of the RLSVI algorithm for online RL, and imitation learning. Our empirical results show that the proposed iRLSVI algorithm is able to achieve significant reduction in regret as compared to two baselines: no offline data, and offline dataset but used without information about the generative policy. Our algorithm bridges online RL and imitation learning for the first time.

Recent rapid developments in reinforcement learning algorithms have been giving us novel possibilities in many fields. However, due to their exploring property, we have to take the risk into consideration when we apply those algorithms to safety-critical problems especially in real environments. In this study, we deal with a safe exploration problem in reinforcement learning under the existence of disturbance. We define the safety during learning as satisfaction of the constraint conditions explicitly defined in terms of the state and propose a safe exploration method that uses partial prior knowledge of a controlled object and disturbance. The proposed method assures the satisfaction of the explicit state constraints with a pre-specified probability even if the controlled object is exposed to a stochastic disturbance following a normal distribution. As theoretical results, we introduce sufficient conditions to construct conservative inputs not containing an exploring aspect used in the proposed method and prove that the safety in the above explained sense is guaranteed with the proposed method. Furthermore, we illustrate the validity and effectiveness of the proposed method through numerical simulations of an inverted pendulum and a four-bar parallel link robot manipulator.

We consider the problem of state estimation from $m$ linear measurements, where the state $u$ to recover is an element of the manifold $\mathcal{M}$ of solutions of a parameter-dependent equation. The state is estimated using a prior knowledge on $\mathcal{M}$ coming from model order reduction. Variational approaches based on linear approximation of $\mathcal{M}$, such as PBDW, yields a recovery error limited by the Kolmogorov $m$-width of $\mathcal{M}$. To overcome this issue, piecewise-affine approximations of $\mathcal{M}$ have also be considered, that consist in using a library of linear spaces among which one is selected by minimizing some distance to $\mathcal{M}$. In this paper, we propose a state estimation method relying on dictionary-based model reduction, where a space is selected from a library generated by a dictionary of snapshots, using a distance to the manifold. The selection is performed among a set of candidate spaces obtained from the path of a $\ell_1$-regularized least-squares problem. Then, in the framework of parameter-dependent operator equations (or PDEs) with affine parameterizations, we provide an efficient offline-online decomposition based on randomized linear algebra, that ensures efficient and stable computations while preserving theoretical guarantees.

Statistical inference for stochastic processes based on high-frequency observations has been an active research area for more than two decades. One of the most well-known and widely studied problems is the estimation of the quadratic variation of the continuous component of an It\^o semimartingale with jumps. Several rate- and variance-efficient estimators have been proposed in the literature when the jump component is of bounded variation. However, to date, very few methods can deal with jumps of unbounded variation. By developing new high-order expansions of the truncated moments of a locally stable L\'evy process, we construct a new rate- and variance-efficient volatility estimator for a class of It\^o semimartingales whose jumps behave locally like those of a stable L\'evy process with Blumenthal-Getoor index $Y\in (1,8/5)$ (hence, of unbounded variation). The proposed method is based on a two-step debiasing procedure for the truncated realized quadratic variation of the process. Our Monte Carlo experiments indicate that the method outperforms other efficient alternatives in the literature in the setting covered by our theoretical framework.

Q-learning, which seeks to learn the optimal Q-function of a Markov decision process (MDP) in a model-free fashion, lies at the heart of reinforcement learning. When it comes to the synchronous setting (such that independent samples for all state-action pairs are drawn from a generative model in each iteration), substantial progress has been made towards understanding the sample efficiency of Q-learning. Consider a $\gamma$-discounted infinite-horizon MDP with state space $\mathcal{S}$ and action space $\mathcal{A}$: to yield an entrywise $\varepsilon$-approximation of the optimal Q-function, state-of-the-art theory for Q-learning requires a sample size exceeding the order of $\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^5\varepsilon^{2}}$, which fails to match existing minimax lower bounds. This gives rise to natural questions: what is the sharp sample complexity of Q-learning? Is Q-learning provably sub-optimal? This paper addresses these questions for the synchronous setting: (1) when $|\mathcal{A}|=1$ (so that Q-learning reduces to TD learning), we prove that the sample complexity of TD learning is minimax optimal and scales as $\frac{|\mathcal{S}|}{(1-\gamma)^3\varepsilon^2}$ (up to log factor); (2) when $|\mathcal{A}|\geq 2$, we settle the sample complexity of Q-learning to be on the order of $\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^4\varepsilon^2}$ (up to log factor). Our theory unveils the strict sub-optimality of Q-learning when $|\mathcal{A}|\geq 2$, and rigorizes the negative impact of over-estimation in Q-learning. Finally, we extend our analysis to accommodate asynchronous Q-learning (i.e., the case with Markovian samples), sharpening the horizon dependency of its sample complexity to be $\frac{1}{(1-\gamma)^4}$.

We study reward-free reinforcement learning (RL) with linear function approximation, where the agent works in two phases: (1) in the exploration phase, the agent interacts with the environment but cannot access the reward; and (2) in the planning phase, the agent is given a reward function and is expected to find a near-optimal policy based on samples collected in the exploration phase. The sample complexities of existing reward-free algorithms have a polynomial dependence on the planning horizon, which makes them intractable for long planning horizon RL problems. In this paper, we propose a new reward-free algorithm for learning linear mixture Markov decision processes (MDPs), where the transition probability can be parameterized as a linear combination of known feature mappings. At the core of our algorithm is uncertainty-weighted value-targeted regression with exploration-driven pseudo-reward and a high-order moment estimator for the aleatoric and epistemic uncertainties. When the total reward is bounded by $1$, we show that our algorithm only needs to explore $\tilde O( d^2\varepsilon^{-2})$ episodes to find an $\varepsilon$-optimal policy, where $d$ is the dimension of the feature mapping. The sample complexity of our algorithm only has a polylogarithmic dependence on the planning horizon and therefore is ``horizon-free''. In addition, we provide an $\Omega(d^2\varepsilon^{-2})$ sample complexity lower bound, which matches the sample complexity of our algorithm up to logarithmic factors, suggesting that our algorithm is optimal.

We examine the problem of regret minimization when the learner is involved in a continuous game with other optimizing agents: in this case, if all players follow a no-regret algorithm, it is possible to achieve significantly lower regret relative to fully adversarial environments. We study this problem in the context of variationally stable games (a class of continuous games which includes all convex-concave and monotone games), and when the players only have access to noisy estimates of their individual payoff gradients. If the noise is additive, the game-theoretic and purely adversarial settings enjoy similar regret guarantees; however, if the noise is multiplicative, we show that the learners can, in fact, achieve constant regret. We achieve this faster rate via an optimistic gradient scheme with learning rate separation -- that is, the method's extrapolation and update steps are tuned to different schedules, depending on the noise profile. Subsequently, to eliminate the need for delicate hyperparameter tuning, we propose a fully adaptive method that attains nearly the same guarantees as its non-adapted counterpart, while operating without knowledge of either the game or of the noise profile.

Line segments are ubiquitous in our human-made world and are increasingly used in vision tasks. They are complementary to feature points thanks to their spatial extent and the structural information they provide. Traditional line detectors based on the image gradient are extremely fast and accurate, but lack robustness in noisy images and challenging conditions. Their learned counterparts are more repeatable and can handle challenging images, but at the cost of a lower accuracy and a bias towards wireframe lines. We propose to combine traditional and learned approaches to get the best of both worlds: an accurate and robust line detector that can be trained in the wild without ground truth lines. Our new line segment detector, DeepLSD, processes images with a deep network to generate a line attraction field, before converting it to a surrogate image gradient magnitude and angle, which is then fed to any existing handcrafted line detector. Additionally, we propose a new optimization tool to refine line segments based on the attraction field and vanishing points. This refinement improves the accuracy of current deep detectors by a large margin. We demonstrate the performance of our method on low-level line detection metrics, as well as on several downstream tasks using multiple challenging datasets. The source code and models are available at //github.com/cvg/DeepLSD.

An algorithm based on a deep probabilistic architecture referred to as a tree-structured sum-product network (t-SPN) is considered for cell classification. The t-SPN is constructed such that the unnormalized probability is represented as conditional probabilities of a subset of most similar cell classes. The constructed t-SPN architecture is learned by maximizing the margin, which is the difference in the conditional probability between the true and the most competitive false label. To enhance the generalization ability of the architecture, L2-regularization (REG) is considered along with the maximum margin (MM) criterion in the learning process. To highlight cell features, this paper investigates the effectiveness of two generic high-pass filters: ideal high-pass filtering and the Laplacian of Gaussian (LOG) filtering. On both HEp-2 and Feulgen benchmark datasets, the t-SPN architecture learned based on the max-margin criterion with regularization produced the highest accuracy rate compared to other state-of-the-art algorithms that include convolutional neural network (CNN) based algorithms. The ideal high-pass filter was more effective on the HEp-2 dataset, which is based on immunofluorescence staining, while the LOG was more effective on the Feulgen dataset, which is based on Feulgen staining.

北京阿比特科技有限公司