Cognitive agent abstractions can help to engineer intelligent systems across mobile devices. On smartphones, the data obtained from onboard sensors can give valuable insights into the user's current situation. Unfortunately, today's cognitive agent frameworks cannot cope well with the challenging characteristics of sensor data. Sensor data is located on a low abstraction level and the individual data elements are not meaningful when observed in isolation. In contrast, cognitive agents operate on high-level percepts and lack the means to effectively detect complex spatio-temporal patterns in sequences of multiple percepts. In this paper, we present a stream-based perception approach that enables the agents to perceive meaningful situations in low-level sensor data streams. We present a crowdshipping case study where autonomous, self-interested agents collaborate to deliver parcels to their destinations. We show how situations derived from smartphone sensor data can trigger and guide auctions, which the agents use to reach agreements. Experiments with real smartphone data demonstrate the benefits of stream-based agent perception.
We present a new method for causal discovery in linear structural vector autoregressive models. We adapt an idea designed for independent observations to the case of time series while retaining its favorable properties, i.e., explicit error control for false causal discovery, at least asymptotically. We apply our method to several real-world bivariate time series datasets and discuss its findings which mostly agree with common understanding. The arrow of time in a model can be interpreted as background knowledge on possible causal mechanisms. Hence, our ideas could be extended to incorporating different background knowledge, even for independent observations.
With the increasing availability of large scale datasets, computational power and tools like automatic differentiation and expressive neural network architectures, sequential data are now often treated in a data-driven way, with a dynamical model trained from the observation data. While neural networks are often seen as uninterpretable black-box architectures, they can still benefit from physical priors on the data and from mathematical knowledge. In this paper, we use a neural network architecture which leverages the long-known Koopman operator theory to embed dynamical systems in latent spaces where their dynamics can be described linearly, enabling a number of appealing features. We introduce methods that enable to train such a model for long-term continuous reconstruction, even in difficult contexts where the data comes in irregularly-sampled time series. The potential for self-supervised learning is also demonstrated, as we show the promising use of trained dynamical models as priors for variational data assimilation techniques, with applications to e.g. time series interpolation and forecasting.
This work explores the dimension reduction problem for Bayesian nonparametric regression and density estimation. More precisely, we are interested in estimating a functional parameter $f$ over the unit ball in $\mathbb{R}^d$, which depends only on a $d_0$-dimensional subspace of $\mathbb{R}^d$, with $d_0 < d$.It is well-known that rescaled Gaussian process priors over the function space achieve smoothness adaptation and posterior contraction with near minimax-optimal rates. Moreover, hierarchical extensions of this approach, equipped with subspace projection, can also adapt to the intrinsic dimension $d_0$ (\cite{Tokdar2011DimensionAdapt}).When the ambient dimension $d$ does not vary with $n$, the minimax rate remains of the order $n^{-\beta/(2\beta +d_0)}$.%When $d$ does not vary with $n$, the order of the minimax rate remains the same regardless of the ambient dimension $d$. However, this is up to multiplicative constants that can become prohibitively large when $d$ grows. The dependences between the contraction rate and the ambient dimension have not been fully explored yet and this work provides a first insight: we let the dimension $d$ grow with $n$ and, by combining the arguments of \cite{Tokdar2011DimensionAdapt} and \cite{Jiang2021VariableSelection}, we derive a growth rate for $d$ that still leads to posterior consistency with minimax rate.The optimality of this growth rate is then discussed.Additionally, we provide a set of assumptions under which consistent estimation of $f$ leads to a correct estimation of the subspace projection, assuming that $d_0$ is known.
Most of the current studies on autonomous vehicle decision-making and control tasks based on reinforcement learning are conducted in simulated environments. The training and testing of these studies are carried out under rule-based microscopic traffic flow, with little consideration of migrating them to real or near-real environments to test their performance. It may lead to a degradation in performance when the trained model is tested in more realistic traffic scenes. In this study, we propose a method to randomize the driving style and behavior of surrounding vehicles by randomizing certain parameters of the car-following model and the lane-changing model of rule-based microscopic traffic flow in SUMO. We trained policies with deep reinforcement learning algorithms under the domain randomized rule-based microscopic traffic flow in freeway and merging scenes, and then tested them separately in rule-based microscopic traffic flow and high-fidelity microscopic traffic flow. Results indicate that the policy trained under domain randomization traffic flow has significantly better success rate and calculative reward compared to the models trained under other microscopic traffic flows.
This work reports on a cross-sectional study on device proficiency, support availability and cybersecurity competence of older adult users of smartphones and/or tablets. Results indicate that cybersecurity competence is associated with both device proficiency and support availability although the variance explained is relatively low. There were no differences in cybersecurity competence between users and non-users of either mobile devices. Users of both smartphones and tablets had significantly higher device proficiency than non-users. Users of tablets had significantly higher support availability than non-users while there were no significant differences between users and non-users of smartphones.
We study a new technique for understanding convergence of learning agents under small modifications of data. We show that such convergence can be understood via an analogue of Fatou's lemma which yields gamma-convergence. We show it's relevance and applications in general machine learning tasks and domain adaptation transfer learning.
Regression methods are fundamental for scientific and technological applications. However, fitted models can be highly unreliable outside of their training domain, and hence the quantification of their uncertainty is crucial in many of their applications. Based on the solution of a constrained optimization problem, we propose "prediction rigidities" as a method to obtain uncertainties of arbitrary pre-trained regressors. We establish a strong connection between our framework and Bayesian inference, and we develop a last-layer approximation that allows the new method to be applied to neural networks. This extension affords cheap uncertainties without any modification to the neural network itself or its training procedure. We show the effectiveness of our method on a wide range of regression tasks, ranging from simple toy models to applications in chemistry and meteorology.
Hundreds of millions of people now interact with language models, with uses ranging from serving as a writing aid to informing hiring decisions. Yet these language models are known to perpetuate systematic racial prejudices, making their judgments biased in problematic ways about groups like African Americans. While prior research has focused on overt racism in language models, social scientists have argued that racism with a more subtle character has developed over time. It is unknown whether this covert racism manifests in language models. Here, we demonstrate that language models embody covert racism in the form of dialect prejudice: we extend research showing that Americans hold raciolinguistic stereotypes about speakers of African American English and find that language models have the same prejudice, exhibiting covert stereotypes that are more negative than any human stereotypes about African Americans ever experimentally recorded, although closest to the ones from before the civil rights movement. By contrast, the language models' overt stereotypes about African Americans are much more positive. We demonstrate that dialect prejudice has the potential for harmful consequences by asking language models to make hypothetical decisions about people, based only on how they speak. Language models are more likely to suggest that speakers of African American English be assigned less prestigious jobs, be convicted of crimes, and be sentenced to death. Finally, we show that existing methods for alleviating racial bias in language models such as human feedback training do not mitigate the dialect prejudice, but can exacerbate the discrepancy between covert and overt stereotypes, by teaching language models to superficially conceal the racism that they maintain on a deeper level. Our findings have far-reaching implications for the fair and safe employment of language technology.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.
In this paper we develop a novel neural network model for predicting implied volatility surface. Prior financial domain knowledge is taken into account. A new activation function that incorporates volatility smile is proposed, which is used for the hidden nodes that process the underlying asset price. In addition, financial conditions, such as the absence of arbitrage, the boundaries and the asymptotic slope, are embedded into the loss function. This is one of the very first studies which discuss a methodological framework that incorporates prior financial domain knowledge into neural network architecture design and model training. The proposed model outperforms the benchmarked models with the option data on the S&P 500 index over 20 years. More importantly, the domain knowledge is satisfied empirically, showing the model is consistent with the existing financial theories and conditions related to implied volatility surface.