亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While summarization has been extensively researched in natural language processing (NLP), cross-lingual cross-temporal summarization (CLCTS) is a largely unexplored area that has the potential to improve cross-cultural accessibility and understanding. This paper comprehensively addresses the CLCTS task, including dataset creation, modeling, and evaluation. We build the first CLCTS corpus, leveraging historical fictive texts and Wikipedia summaries in English and German, and examine the effectiveness of popular transformer end-to-end models with different intermediate finetuning tasks. Additionally, we explore the potential of ChatGPT for CLCTS as a summarizer and an evaluator. Overall, we report evaluations from humans, ChatGPT, and several recent automatic evaluation metrics where we find that our intermediate task finetuned end-to-end models generate bad to moderate quality summaries; ChatGPT as a summarizer (without any finetuning) provides moderate to good quality outputs and as an evaluator correlates moderately with human evaluations but is prone to giving lower scores. ChatGPT also seems very adept at normalizing historical text and outperforms context-unaware spelling normalization tools such as Norma. We finally test ChatGPT in a scenario with adversarially attacked and unseen source documents and find that ChatGPT profits from its prior knowledge to a certain degree, with better performances for omission and entity swap than negation against its prior knowledge. This benefit inflates its assessed quality as ChatGPT performs slightly worse for unseen source documents compared to seen documents. We additionally introspect our models' performances to find that longer, older and more complex source texts (all of which are more characteristic for historical language variants) are harder to summarize for all models, indicating the difficulty of the CLCTS task.

相關內容

Recent studies have verified that equivariant methods can significantly improve the data efficiency, generalizability, and robustness in robot learning. Meanwhile, denoising diffusion-based generative modeling has recently gained significant attention as a promising approach for robotic manipulation learning from demonstrations with stochastic behaviors. In this paper, we present Diffusion-EDFs, a novel approach that incorporates spatial roto-translation equivariance, i.e., SE(3)-equivariance to diffusion generative modeling. By integrating SE(3)-equivariance into our model architectures, we demonstrate that our proposed method exhibits remarkable data efficiency, requiring only 5 to 10 task demonstrations for effective end-to-end training. Furthermore, our approach showcases superior generalizability compared to previous diffusion-based manipulation methods.

As a phenomenal large language model, ChatGPT has achieved unparalleled success in various real-world tasks and increasingly plays an important role in our daily lives and work. However, extensive concerns are also raised about the potential ethical issues, especially about whether ChatGPT-like artificial general intelligence (AGI) will replace human jobs. To this end, in this paper, we introduce a preliminary data-driven study on the future of ChatGPT-enabled labor market from the view of Human-AI Symbiosis instead of Human-AI Confrontation. To be specific, we first conduct an in-depth analysis of large-scale job posting data in BOSS Zhipin, the largest online recruitment platform in China. The results indicate that about 28% of occupations in the current labor market require ChatGPT-related skills. Furthermore, based on a large-scale occupation-centered knowledge graph, we develop a semantic information enhanced collaborative filtering algorithm to predict the future occupation-skill relations in the labor market. As a result, we find that additional 45% occupations in the future will require ChatGPT-related skills. In particular, industries related to technology, products, and operations are expected to have higher proficiency requirements for ChatGPT-related skills, while the manufacturing, services, education, and health science related industries will have lower requirements for ChatGPT-related skills.

While the performance of cross-lingual TTS based on monolingual corpora has been significantly improved recently, generating cross-lingual speech still suffers from the foreign accent problem, leading to limited naturalness. Besides, current cross-lingual methods ignore modeling emotion, which is indispensable paralinguistic information in speech delivery. In this paper, we propose DiCLET-TTS, a Diffusion model based Cross-Lingual Emotion Transfer method that can transfer emotion from a source speaker to the intra- and cross-lingual target speakers. Specifically, to relieve the foreign accent problem while improving the emotion expressiveness, the terminal distribution of the forward diffusion process is parameterized into a speaker-irrelevant but emotion-related linguistic prior by a prior text encoder with the emotion embedding as a condition. To address the weaker emotional expressiveness problem caused by speaker disentanglement in emotion embedding, a novel orthogonal projection based emotion disentangling module (OP-EDM) is proposed to learn the speaker-irrelevant but emotion-discriminative embedding. Moreover, a condition-enhanced DPM decoder is introduced to strengthen the modeling ability of the speaker and the emotion in the reverse diffusion process to further improve emotion expressiveness in speech delivery. Cross-lingual emotion transfer experiments show the superiority of DiCLET-TTS over various competitive models and the good design of OP-EDM in learning speaker-irrelevant but emotion-discriminative embedding.

Rapid advancements of large language models (LLMs) have enabled the processing, understanding, and generation of human-like text, with increasing integration into systems that touch our social sphere. Despite this success, these models can learn, perpetuate, and amplify harmful social biases. In this paper, we present a comprehensive survey of bias evaluation and mitigation techniques for LLMs. We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing, defining distinct facets of harm and introducing several desiderata to operationalize fairness for LLMs. We then unify the literature by proposing three intuitive taxonomies, two for bias evaluation, namely metrics and datasets, and one for mitigation. Our first taxonomy of metrics for bias evaluation disambiguates the relationship between metrics and evaluation datasets, and organizes metrics by the different levels at which they operate in a model: embeddings, probabilities, and generated text. Our second taxonomy of datasets for bias evaluation categorizes datasets by their structure as counterfactual inputs or prompts, and identifies the targeted harms and social groups; we also release a consolidation of publicly-available datasets for improved access. Our third taxonomy of techniques for bias mitigation classifies methods by their intervention during pre-processing, in-training, intra-processing, and post-processing, with granular subcategories that elucidate research trends. Finally, we identify open problems and challenges for future work. Synthesizing a wide range of recent research, we aim to provide a clear guide of the existing literature that empowers researchers and practitioners to better understand and prevent the propagation of bias in LLMs.

Polyp segmentation has recently garnered significant attention, and multiple methods have been formulated to achieve commendable outcomes. However, these techniques often confront difficulty when working with the complex polyp foreground and their surrounding regions because of the nature of convolution operation. Besides, most existing methods forget to exploit the potential information from multiple decoder stages. To address this challenge, we suggest combining MetaFormer, introduced as a baseline for integrating CNN and Transformer, with UNet framework and incorporating our Multi-scale Upsampling block (MU). This simple module makes it possible to combine multi-level information by exploring multiple receptive field paths of the shallow decoder stage and then adding with the higher stage to aggregate better feature representation, which is essential in medical image segmentation. Taken all together, we propose MetaFormer Multi-scale Upsampling Network (M$^2$UNet) for the polyp segmentation task. Extensive experiments on five benchmark datasets demonstrate that our method achieved competitive performance compared with several previous methods.

Text-to-SQL is a task that converts a natural language question into a structured query language (SQL) to retrieve information from a database. Large language models (LLMs) work well in natural language generation tasks, but they are not specifically pre-trained to understand the syntax and semantics of SQL commands. In this paper, we propose an LLM-based framework for Text-to-SQL which retrieves helpful demonstration examples to prompt LLMs. However, questions with different database schemes can vary widely, even if the intentions behind them are similar and the corresponding SQL queries exhibit similarities. Consequently, it becomes crucial to identify the appropriate SQL demonstrations that align with our requirements. We design a de-semanticization mechanism that extracts question skeletons, allowing us to retrieve similar examples based on their structural similarity. We also model the relationships between question tokens and database schema items (i.e., tables and columns) to filter out scheme-related information. Our framework adapts the range of the database schema in prompts to balance length and valuable information. A fallback mechanism allows for a more detailed schema to be provided if the generated SQL query fails. Ours outperforms state-of-the-art models and demonstrates strong generalization ability on three cross-domain Text-to-SQL benchmarks.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

Recent VQA models may tend to rely on language bias as a shortcut and thus fail to sufficiently learn the multi-modal knowledge from both vision and language. In this paper, we investigate how to capture and mitigate language bias in VQA. Motivated by causal effects, we proposed a novel counterfactual inference framework, which enables us to capture the language bias as the direct causal effect of questions on answers and reduce the language bias by subtracting the direct language effect from the total causal effect. Experiments demonstrate that our proposed counterfactual inference framework 1) is general to various VQA backbones and fusion strategies, 2) achieves competitive performance on the language-bias sensitive VQA-CP dataset while performs robustly on the balanced VQA v2 dataset.

For languages with no annotated resources, transferring knowledge from rich-resource languages is an effective solution for named entity recognition (NER). While all existing methods directly transfer from source-learned model to a target language, in this paper, we propose to fine-tune the learned model with a few similar examples given a test case, which could benefit the prediction by leveraging the structural and semantic information conveyed in such similar examples. To this end, we present a meta-learning algorithm to find a good model parameter initialization that could fast adapt to the given test case and propose to construct multiple pseudo-NER tasks for meta-training by computing sentence similarities. To further improve the model's generalization ability across different languages, we introduce a masking scheme and augment the loss function with an additional maximum term during meta-training. We conduct extensive experiments on cross-lingual named entity recognition with minimal resources over five target languages. The results show that our approach significantly outperforms existing state-of-the-art methods across the board.

Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.

北京阿比特科技有限公司