亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Creating programs to correctly manipulate data is a difficult task, as the underlying programming languages and APIs can be challenging to learn for many users who are not skilled programmers. Large language models (LLMs) demonstrate remarkable potential for generating code from natural language, but in the data manipulation domain, apart from the natural language (NL) description of the intended task, we also have the dataset on which the task is to be performed, or the "data context". Existing approaches have utilized data context in a limited way by simply adding relevant information from the input data into the prompts sent to the LLM. In this work, we utilize the available input data to execute the candidate programs generated by the LLMs and gather their outputs. We introduce semantic reranking, a technique to rerank the programs generated by LLMs based on three signals coming the program outputs: (a) semantic filtering and well-formedness based score tuning: do programs even generate well-formed outputs, (b) semantic interleaving: how do the outputs from different candidates compare to each other, and (c) output-based score tuning: how do the outputs compare to outputs predicted for the same task. We provide theoretical justification for semantic interleaving. We also introduce temperature mixing, where we combine samples generated by LLMs using both high and low temperatures. We extensively evaluate our approach in three domains, namely databases (SQL), data science (Pandas) and business intelligence (Excel's Power Query M) on a variety of new and existing benchmarks. We observe substantial gains across domains, with improvements of up to 45% in top-1 accuracy and 34% in top-3 accuracy.

相關內容

機器學習系統設計系統評(ping)估標(biao)準

Large Language Models (LLMs) have shown remarkable aptitude in code generation but still struggle on challenging programming tasks. Self-repair -- in which the model debugs and fixes mistakes in its own code -- has recently become a popular way to boost performance in these settings. However, only very limited studies on how and when self-repair works effectively exist in the literature, and one might wonder to what extent a model is really capable of providing accurate feedback on why the code is wrong when that code was generated by the same model. In this paper, we analyze GPT-3.5 and GPT-4's ability to perform self-repair on APPS, a challenging dataset consisting of diverse coding challenges. To do so, we first establish a new evaluation strategy dubbed pass@t that measures the pass rate of the tasks against the total number of tokens sampled from the model, enabling a fair comparison to purely sampling-based approaches. With this evaluation strategy, we find that the effectiveness of self-repair is only seen in GPT-4. We also observe that self-repair is bottlenecked by the feedback stage; using GPT-4 to give feedback on the programs generated by GPT-3.5 and using expert human programmers to give feedback on the programs generated by GPT-4, we unlock significant performance gains.

This paper investigates the use of word surprisal, a measure of the predictability of a word in a given context, as a feature to aid speech synthesis prosody. We explore how word surprisal extracted from large language models (LLMs) correlates with word prominence, a signal-based measure of the salience of a word in a given discourse. We also examine how context length and LLM size affect the results, and how a speech synthesizer conditioned with surprisal values compares with a baseline system. To evaluate these factors, we conducted experiments using a large corpus of English text and LLMs of varying sizes. Our results show that word surprisal and word prominence are moderately correlated, suggesting that they capture related but distinct aspects of language use. We find that length of context and size of the LLM impact the correlations, but not in the direction anticipated, with longer contexts and larger LLMs generally underpredicting prominent words in a nearly linear manner. We demonstrate that, in line with these findings, a speech synthesizer conditioned with surprisal values provides a minimal improvement over the baseline with the results suggesting a limited effect of using surprisal values for eliciting appropriate prominence patterns.

Activity and property prediction models are the central workhorses in drug discovery and materials sciences, but currently they have to be trained or fine-tuned for new tasks. Without training or fine-tuning, scientific language models could be used for such low-data tasks through their announced zero- and few-shot capabilities. However, their predictive quality at activity prediction is lacking. In this work, we envision a novel type of activity prediction model that is able to adapt to new prediction tasks at inference time, via understanding textual information describing the task. To this end, we propose a new architecture with separate modules for chemical and natural language inputs, and a contrastive pre-training objective on data from large biochemical databases. In extensive experiments, we show that our method CLAMP yields improved predictive performance on few-shot learning benchmarks and zero-shot problems in drug discovery. We attribute the advances of our method to the modularized architecture and to our pre-training objective.

Recent text-to-image generative models can generate high-fidelity images from text inputs, but the quality of these generated images cannot be accurately evaluated by existing evaluation metrics. To address this issue, we introduce Human Preference Dataset v2 (HPD v2), a large-scale dataset that captures human preferences on images from a wide range of sources. HPD v2 comprises 798,090 human preference choices on 430,060 pairs of images, making it the largest dataset of its kind. The text prompts and images are deliberately collected to eliminate potential bias, which is a common issue in previous datasets. By fine-tuning CLIP on HPD v2, we obtain Human Preference Score v2 (HPS v2), a scoring model that can more accurately predict text-generated images' human preferences. Our experiments demonstrate that HPS v2 generalizes better than previous metrics across various image distributions and is responsive to algorithmic improvements of text-to-image generative models, making it a preferable evaluation metric for these models. We also investigate the design of the evaluation prompts for text-to-image generative models, to make the evaluation stable, fair and easy-to-use. Finally, we establish a benchmark for text-to-image generative models using HPS v2, which includes a set of recent text-to-image models from the academia, community and industry. The code and dataset is / will be available at //github.com/tgxs002/HPSv2.

Large language models have recently advanced the state of the art on many natural language processing benchmarks. The newest generation of models can be applied to a variety of tasks with little to no specialized training. This technology creates various opportunities for applications in the context of data management. The tutorial will introduce participants to basic background on language models, discuss different methods to use language models, and give an overview and short demonstration of available libraries and APIs. Models for generating natural language will be considered as well as models, such as GPT-3 Codex, which complete program code or generate code from natural language instructions. Finally, the tutorial will discuss recent research in the database community that exploits language models in the context of traditional database systems or proposes novel system architectures that are based on them. The tutorial is targeted at database researchers. No prior background on language models is required. The goal of the tutorial is to introduce database researchers to the latest generation of language models, and to their use cases in the domain of data management.

Multilingual Automatic Speech Recognition (ASR) models are capable of transcribing audios across multiple languages, eliminating the need for separate models. In addition, they can perform Language Identification (LID) and handle code-switched speech. However, training these models requires special code-switch and multilingual speech corpora which are sparsely available. In this paper, we evaluate different approaches towards training of bilingual as well as code-switched ASR models using purely monolingual data sources. We introduce the concept of aggregate tokenizers that differs from the current prevalent technique of generating LIDs at the boundaries of monolingual samples and produces LID for each emitted token instead. We compare bilingual and monolingual model performance, showcase the efficacy of aggregate tokenizers, present a synthetic code-switched ASR data generation technique and demonstrate the effectiveness of the proposed code-switched ASR models for the tasks of speech recognition and spoken language identification.

This paper presents a new synthesis-based approach for batch image processing. Unlike existing tools that can only apply global edits to the entire image, our method can apply fine-grained edits to individual objects within the image. For example, our method can selectively blur or crop specific objects that have a certain property. To facilitate such fine-grained image editing tasks, we propose a neuro-symbolic domain-specific language (DSL) that combines pre-trained neural networks for image classification with other language constructs that enable symbolic reasoning. Our method can automatically learn programs in this DSL from user demonstrations by utilizing a novel synthesis algorithm. We have implemented the proposed technique in a tool called ImageEye and evaluated it on 50 image editing tasks. Our evaluation shows that ImageEye is able to automate 96% of these tasks.

Large language models (LLMs) have demonstrated exciting progress in acquiring diverse new capabilities through in-context learning, ranging from logical reasoning to code-writing. Robotics researchers have also explored using LLMs to advance the capabilities of robotic control. However, since low-level robot actions are hardware-dependent and underrepresented in LLM training corpora, existing efforts in applying LLMs to robotics have largely treated LLMs as semantic planners or relied on human-engineered control primitives to interface with the robot. On the other hand, reward functions are shown to be flexible representations that can be optimized for control policies to achieve diverse tasks, while their semantic richness makes them suitable to be specified by LLMs. In this work, we introduce a new paradigm that harnesses this realization by utilizing LLMs to define reward parameters that can be optimized and accomplish variety of robotic tasks. Using reward as the intermediate interface generated by LLMs, we can effectively bridge the gap between high-level language instructions or corrections to low-level robot actions. Meanwhile, combining this with a real-time optimizer, MuJoCo MPC, empowers an interactive behavior creation experience where users can immediately observe the results and provide feedback to the system. To systematically evaluate the performance of our proposed method, we designed a total of 17 tasks for a simulated quadruped robot and a dexterous manipulator robot. We demonstrate that our proposed method reliably tackles 90% of the designed tasks, while a baseline using primitive skills as the interface with Code-as-policies achieves 50% of the tasks. We further validated our method on a real robot arm where complex manipulation skills such as non-prehensile pushing emerge through our interactive system.

Given a user's input text, text-matching recommender systems output relevant items by comparing the input text to available items' description, such as product-to-product recommendation on e-commerce platforms. As users' interests and item inventory are expected to change, it is important for a text-matching system to generalize to data shifts, a task known as out-of-distribution (OOD) generalization. However, we find that the popular approach of fine-tuning a large, base language model on paired item relevance data (e.g., user clicks) can be counter-productive for OOD generalization. For a product recommendation task, fine-tuning obtains worse accuracy than the base model when recommending items in a new category or for a future time period. To explain this generalization failure, we consider an intervention-based importance metric, which shows that a fine-tuned model captures spurious correlations and fails to learn the causal features that determine the relevance between any two text inputs. Moreover, standard methods for causal regularization do not apply in this setting, because unlike in images, there exist no universally spurious features in a text-matching task (the same token may be spurious or causal depending on the text it is being matched to). For OOD generalization on text inputs, therefore, we highlight a different goal: avoiding high importance scores for certain features. We do so using an intervention-based regularizer that constraints the causal effect of any token on the model's relevance score to be similar to the base model. Results on Amazon product and 3 question recommendation datasets show that our proposed regularizer improves generalization for both in-distribution and OOD evaluation, especially in difficult scenarios when the base model is not accurate.

As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical models typically relies on heavily annotated data, which is infeasible for new domains. Therefore, it is pivotal for an NLG system to generalize well with limited labelled data in real applications. To this end, we present FewShotWoz, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems. Further, we develop the SC-GPT model. It is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability, and fine-tuned with only a few domain-specific labels to adapt to new domains. Experiments on FewShotWoz and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods, measured by various automatic metrics and human evaluations.

北京阿比特科技有限公司