The growth pattern of an invasive cell-to-cell propagation (called the successive coronas) on the square grid is a tilted square. On the triangular and hexagonal grids, it is an hexagon. It is remarkable that, on the aperiodic structure of Penrose tilings, this cell-to-cell diffusion process tends to a regular decagon (at the limit). In this article we generalize this result to any regular multigrid dual tiling, by defining the characteristic polygon of a multigrid and its dual tiling. Exploiting this elegant duality allows to fully understand why such surprising phenomena, of seeing highly regular polygonal shapes emerge from aperiodic underlying structures, happen.
We propose a new framework of Hessian-free force-gradient integrators that do not require the analytical expression of the force-gradient term based on the Hessian of the potential. Due to that the new class of decomposition algorithms for separable Hamiltonian systems with quadratic kinetic energy may be particularly useful when applied to Hamiltonian systems where an evaluation of the Hessian is significantly more expensive than an evaluation of its gradient, e.g. in molecular dynamics simulations of classical systems. Numerical experiments of an N-body problem, as well as applications to the molecular dynamics step in the Hybrid Monte Carlo (HMC) algorithm for lattice simulations of the Schwinger model and Quantum Chromodynamics (QCD) verify these expectations.
The Fisher-Rao distance between two probability distributions of a statistical model is defined as the Riemannian geodesic distance induced by the Fisher information metric. In order to calculate the Fisher-Rao distance in closed-form, we need (1) to elicit a formula for the Fisher-Rao geodesics, and (2) to integrate the Fisher length element along those geodesics. We consider several numerically robust approximation and bounding techniques for the Fisher-Rao distances: First, we report generic upper bounds on Fisher-Rao distances based on closed-form 1D Fisher-Rao distances of submodels. Second, we describe several generic approximation schemes depending on whether the Fisher-Rao geodesics or pregeodesics are available in closed-form or not. In particular, we obtain a generic method to guarantee an arbitrarily small additive error on the approximation provided that Fisher-Rao pregeodesics and tight lower and upper bounds are available. Third, we consider the case of Fisher metrics being Hessian metrics, and report generic tight upper bounds on the Fisher-Rao distances using techniques of information geometry. Uniparametric and biparametric statistical models always have Fisher Hessian metrics, and in general a simple test allows to check whether the Fisher information matrix yields a Hessian metric or not. Fourth, we consider elliptical distribution families and show how to apply the above techniques to these models. We also propose two new distances based either on the Fisher-Rao lengths of curves serving as proxies of Fisher-Rao geodesics, or based on the Birkhoff/Hilbert projective cone distance. Last, we consider an alternative group-theoretic approach for statistical transformation models based on the notion of maximal invariant which yields insights on the structures of the Fisher-Rao distance formula which may be used fruitfully in applications.
We solve constrained optimal transport problems between the laws of solutions of stochastic differential equations (SDEs). We consider SDEs with irregular coefficients, making only minimal regularity assumptions. We show that the so-called synchronous coupling is optimal among bicausal couplings, that is couplings that respect the flow of information encoded in the stochastic processes. Our results provide a method to numerically compute the adapted Wasserstein distance between laws of SDEs with irregular coefficients. Moreover, we introduce a transformation-based semi-implicit numerical scheme and establish the first strong convergence result for SDEs with exponentially growing and discontinuous drift.
Regression models that incorporate smooth functions of predictor variables to explain the relationships with a response variable have gained widespread usage and proved successful in various applications. By incorporating smooth functions of predictor variables, these models can capture complex relationships between the response and predictors while still allowing for interpretation of the results. In situations where the relationships between a response variable and predictors are explored, it is not uncommon to assume that these relationships adhere to certain shape constraints. Examples of such constraints include monotonicity and convexity. The scam package for R has become a popular package to carry out the full fitting of exponential family generalized additive modelling with shape restrictions on smooths. The paper aims to extend the existing framework of shape-constrained generalized additive models (SCAM) to accommodate smooth interactions of covariates, linear functionals of shape-constrained smooths and incorporation of residual autocorrelation. The methods described in this paper are implemented in the recent version of the package scam, available on the Comprehensive R Archive Network (CRAN).
We present a comprehensive analysis of singular vector and singular subspace perturbations in the context of the signal plus random Gaussian noise matrix model. Assuming a low-rank signal matrix, we extend the Wedin-Davis-Kahan theorem in a fully generalized manner, applicable to any unitarily invariant matrix norm, extending previous results of O'Rourke, Vu and the author. We also obtain the fine-grained results, which encompass the $\ell_\infty$ analysis of singular vectors, the $\ell_{2, \infty}$ analysis of singular subspaces, as well as the exploration of linear and bilinear functions related to the singular vectors. Moreover, we explore the practical implications of these findings, in the context of the Gaussian mixture model and the submatrix localization problem.
In logistic regression modeling, Firth's modified estimator is widely used to address the issue of data separation, which results in the nonexistence of the maximum likelihood estimate. Firth's modified estimator can be formulated as a penalized maximum likelihood estimator in which Jeffreys' prior is adopted as the penalty term. Despite its widespread use in practice, the formal verification of the corresponding estimate's existence has not been established. In this study, we establish the existence theorem of Firth's modified estimate in binomial logistic regression models, assuming only the full column rankness of the design matrix. We also discuss other binomial regression models obtained through alternating link functions and prove the existence of similar penalized maximum likelihood estimates for such models.
This work presents a comparative review and classification between some well-known thermodynamically consistent models of hydrogel behavior in a large deformation setting, specifically focusing on solvent absorption/desorption and its impact on mechanical deformation and network swelling. The proposed discussion addresses formulation aspects, general mathematical classification of the governing equations, and numerical implementation issues based on the finite element method. The theories are presented in a unified framework demonstrating that, despite not being evident in some cases, all of them follow equivalent thermodynamic arguments. A detailed numerical analysis is carried out where Taylor-Hood elements are employed in the spatial discretization to satisfy the inf-sup condition and to prevent spurious numerical oscillations. The resulting discrete problems are solved using the FEniCS platform through consistent variational formulations, employing both monolithic and staggered approaches. We conduct benchmark tests on various hydrogel structures, demonstrating that major differences arise from the chosen volumetric response of the hydrogel. The significance of this choice is frequently underestimated in the state-of-the-art literature but has been shown to have substantial implications on the resulting hydrogel behavior.
This study introduces a reduced-order model (ROM) for analyzing the transient diffusion-deformation of hydrogels. The full-order model (FOM) describing hydrogel transient behavior consists of a coupled system of partial differential equations in which chemical potential and displacements are coupled. This system is formulated in a monolithic fashion and solved using the Finite Element Method (FEM). The ROM employs proper orthogonal decomposition as a model order reduction approach. We test the ROM performance through benchmark tests on hydrogel swelling behavior and a case study simulating co-axial printing. Finally, we embed the ROM into an optimization problem to identify the model material parameters of the coupled problem using full-field data. We verify that the ROM can predict hydrogels' diffusion-deformation evolution and material properties, significantly reducing computation time compared to the FOM. The results demonstrate the ROM's accuracy and computational efficiency. This work paths the way towards advanced practical applications of ROMs, e.g., in the context of feedback error control in hydrogel 3D printing.
The random batch method (RBM) proposed in [Jin et al., J. Comput. Phys., 400(2020), 108877] for large interacting particle systems is an efficient with linear complexity in particle numbers and highly scalable algorithm for $N$-particle interacting systems and their mean-field limits when $N$ is large. We consider in this work the quantitative error estimate of RBM toward its mean-field limit, the Fokker-Planck equation. Under mild assumptions, we obtain a uniform-in-time $O(\tau^2 + 1/N)$ bound on the scaled relative entropy between the joint law of the random batch particles and the tensorized law at the mean-field limit, where $\tau$ is the time step size and $N$ is the number of particles. Therefore, we improve the existing rate in discretization step size from $O(\sqrt{\tau})$ to $O(\tau)$ in terms of the Wasserstein distance.
In many experimental contexts, whether and how network interactions impact the outcome of interest for both treated and untreated individuals are key concerns. Networks data is often assumed to perfectly represent these possible interactions. This paper considers the problem of estimating treatment effects when measured connections are, instead, a noisy representation of the true spillover pathways. We show that existing methods, using the potential outcomes framework, yield biased estimators in the presence of this mismeasurement. We develop a new method, using a class of mixture models, that can account for missing connections and discuss its estimation via the Expectation-Maximization algorithm. We check our method's performance by simulating experiments on real network data from 43 villages in India. Finally, we use data from a previously published study to show that estimates using our method are more robust to the choice of network measure.