The random batch method (RBM) proposed in [Jin et al., J. Comput. Phys., 400(2020), 108877] for large interacting particle systems is an efficient with linear complexity in particle numbers and highly scalable algorithm for $N$-particle interacting systems and their mean-field limits when $N$ is large. We consider in this work the quantitative error estimate of RBM toward its mean-field limit, the Fokker-Planck equation. Under mild assumptions, we obtain a uniform-in-time $O(\tau^2 + 1/N)$ bound on the scaled relative entropy between the joint law of the random batch particles and the tensorized law at the mean-field limit, where $\tau$ is the time step size and $N$ is the number of particles. Therefore, we improve the existing rate in discretization step size from $O(\sqrt{\tau})$ to $O(\tau)$ in terms of the Wasserstein distance.
We describe two families of statistical tests to detect partial correlation in vectorial timeseries. The tests measure whether an observed timeseries Y can be predicted from a second series X, even after accounting for a third series Z which may correlate with X. They do not make any assumptions on the nature of these timeseries, such as stationarity or linearity, but they do require that multiple statistically independent recordings of the 3 series are available. Intuitively, the tests work by asking if the series Y recorded on one experiment can be better predicted from X recorded on the same experiment than on a different experiment, after accounting for the prediction from Z recorded on both experiments.
The implication problem for conditional independence (CI) asks whether the fact that a probability distribution obeys a given finite set of CI relations implies that a further CI statement also holds in this distribution. This problem has a long and fascinating history, cumulating in positive results about implications now known as the semigraphoid axioms as well as impossibility results about a general finite characterization of CI implications. Motivated by violation of faithfulness assumptions in causal discovery, we study the implication problem in the special setting where the CI relations are obtained from a directed acyclic graphical (DAG) model along with one additional CI statement. Focusing on the Gaussian case, we give a complete characterization of when such an implication is graphical by using algebraic techniques. Moreover, prompted by the relevance of strong faithfulness in statistical guarantees for causal discovery algorithms, we give a graphical solution for an approximate CI implication problem, in which we ask whether small values of one additional partial correlation entail small values for yet a further partial correlation.
We describe a simple deterministic near-linear time approximation scheme for uncapacitated minimum cost flow in undirected graphs with real edge weights, a problem also known as transshipment. Specifically, our algorithm takes as input a (connected) undirected graph $G = (V, E)$, vertex demands $b \in \mathbb{R}^V$ such that $\sum_{v \in V} b(v) = 0$, positive edge costs $c \in \mathbb{R}_{>0}^E$, and a parameter $\varepsilon > 0$. In $O(\varepsilon^{-2} m \log^{O(1)} n)$ time, it returns a flow $f$ such that the net flow out of each vertex is equal to the vertex's demand and the cost of the flow is within a $(1 + \varepsilon)$ factor of optimal. Our algorithm is combinatorial and has no running time dependency on the demands or edge costs. With the exception of a recent result presented at STOC 2022 for polynomially bounded edge weights, all almost- and near-linear time approximation schemes for transshipment relied on randomization to embed the problem instance into low-dimensional space. Our algorithm instead deterministically approximates the cost of routing decisions that would be made if the input were subject to a random tree embedding. To avoid computing the $\Omega(n^2)$ vertex-vertex distances that an approximation of this kind suggests, we also limit the available routing decisions using distances explicitly stored in the well-known Thorup-Zwick distance oracle.
We argue that the current POW based consensus algorithm of the Bitcoin network suffers from a fundamental economic discrepancy between the real world transaction (txn) costs incurred by miners and the wealth that is being transacted. Put simply, whether one transacts 1 satoshi or 1 bitcoin, the same amount of electricity is needed when including this txn into a block. The notorious Bitcoin blockchain problems such as its high energy usage per txn or its scalability issues are, either partially or fully, mere consequences of this fundamental economic inconsistency. We propose making the computational cost of securing the txns proportional to the wealth being transferred, at least temporarily. First, we present a simple incentive based model of Bitcoin's security. Then, guided by this model, we augment each txn by two parameters, one controlling the time spent securing this txn and the second determining the fraction of the network used to accomplish this. The current Bitcoin txns are naturally embedded into this parametrized space. Then we introduce a sequence of hierarchical block structures (HBSs) containing these parametrized txns. The first of those HBSs exploits only a single degree of freedom of the extended txn, namely the time investment, but it allows already for txns with a variable level of trust together with aligned network fees and energy usage. In principle, the last HBS should scale to tens of thousands timely txns per second while preserving what the previous HBSs achieved. We also propose a simple homotopy based transition mechanism which enables us to relatively safely and continuously introduce new HBSs into the existing blockchain. Our approach is constructive and as rigorous as possible and we attempt to analyze all aspects of these developments, al least at a conceptual level. The process is supported by evaluation on recent transaction data.
Many analyses of multivariate data focus on evaluating the dependence between two sets of variables, rather than the dependence among individual variables within each set. Canonical correlation analysis (CCA) is a classical data analysis technique that estimates parameters describing the dependence between such sets. However, inference procedures based on traditional CCA rely on the assumption that all variables are jointly normally distributed. We present a semiparametric approach to CCA in which the multivariate margins of each variable set may be arbitrary, but the dependence between variable sets is described by a parametric model that provides low-dimensional summaries of dependence. While maximum likelihood estimation in the proposed model is intractable, we propose two estimation strategies: one using a pseudolikelihood for the model and one using a Markov chain Monte Carlo (MCMC) algorithm that provides Bayesian estimates and confidence regions for the between-set dependence parameters. The MCMC algorithm is derived from a multirank likelihood function, which uses only part of the information in the observed data in exchange for being free of assumptions about the multivariate margins. We apply the proposed Bayesian inference procedure to Brazilian climate data and monthly stock returns from the materials and communications market sectors.
In (Dzanic, J. Comp. Phys., 508:113010, 2024), a limiting approach for high-order discontinuous Galerkin schemes was introduced which allowed for imposing constraints on the solution continuously (i.e., everywhere within the element). While exact for linear constraint functionals, this approach only imposed a sufficient (but not the minimum necessary) amount of limiting for nonlinear constraint functionals. This short note shows how this limiting approach can be extended to allow exactness for general nonlinear quasiconcave constraint functionals through a nonlinear limiting procedure, reducing unnecessary numerical dissipation. Some examples are shown for nonlinear pressure and entropy constraints in the compressible gas dynamics equations, where both analytic and iterative approaches are used.
We establish the asymptotic behaviour of the sum of squared residuals autocovariances and autocorrelations for the class of multi-variate power transformed asymmetric models. We then derive a portmanteau test. We establish the asymptotic distribution of the proposed statistics. These asymptotic results are illustrated by Monte Carlo experiments. An application to a bivariate real financial data is also proposed.
We have introduced the generalized alternating direction implicit iteration (GADI) method for solving large sparse complex symmetric linear systems and proved its convergence properties. Additionally, some numerical results have demonstrated the effectiveness of this algorithm. Furthermore, as an application of the GADI method in solving complex symmetric linear systems, we utilized the flattening operator and Kronecker product properties to solve Lyapunov and Riccati equations with complex coefficients using the GADI method. In solving the Riccati equation, we combined inner and outer iterations, first simplifying the Riccati equation into a Lyapunov equation using the Newton method, and then applying the GADI method for solution. Finally, we provided convergence analysis of the method and corresponding numerical results.
Relying on sheaf theory, we introduce the notions of projected barcodes and projected distances for multi-parameter persistence modules. Projected barcodes are defined as derived pushforward of persistence modules onto $\mathbb{R}$. Projected distances come in two flavors: the integral sheaf metrics (ISM) and the sliced convolution distances (SCD). We conduct a systematic study of the stability of projected barcodes and show that the fibered barcode is a particular instance of projected barcodes. We prove that the ISM and the SCD provide lower bounds for the convolution distance. Furthermore, we show that the $\gamma$-linear ISM and the $\gamma$-linear SCD which are projected distances tailored for $\gamma$-sheaves can be computed using TDA software dedicated to one-parameter persistence modules. Moreover, the time and memory complexity required to compute these two metrics are advantageous since our approach does not require computing nor storing an entire $n$-persistence module.
Quantized tensor trains (QTTs) have recently emerged as a framework for the numerical discretization of continuous functions, with the potential for widespread applications in numerical analysis. However, the theory of QTT approximation is not fully understood. In this work, we advance this theory from the point of view of multiscale polynomial interpolation. This perspective clarifies why QTT ranks decay with increasing depth, quantitatively controls QTT rank in terms of smoothness of the target function, and explains why certain functions with sharp features and poor quantitative smoothness can still be well approximated by QTTs. The perspective also motivates new practical and efficient algorithms for the construction of QTTs from function evaluations on multiresolution grids.